
TinyBuilder

User Guide

Beta

Copyright © 2023, Tiny Management, Inc. All rights Reserved

Table of Contents
Introduction

The Script
The Job

Data
Assigning Data and Paths

The File List
Path Concatenation

Defining Common Commands
Environment Blocks
Using Visual Studio

Retrieving Files from Failed Jobs
Specifying Common Machines
Specifying a Machine for a Job

Controlling Machine Utilization
Projects

Importing Other Scripts
Comments

Command Generation

The Build Log
The Connection List

The Job List
The Command List

Output Tags
The Output List

The Client
The Command Line Interface

Job Scheduling
SSH Integration

The Interactive User Interface
Batch Use

Error Handling

The Agent

Maintenance Story

1

2
3
6
9
11
13
14
16
17
19
19
22
23
24
25
25

27

44
45
45
46
48
49

50
50
51
52
52
53
53

54

56

1

Introduction

The TinyBuilder documentation comes in three parts, a user guide, a reference guide, and for the
non-Windows platforms, man pages.

The user guide is intended to be the most used document. It provides the information needed
to build and maintain a working build system that makes optimal use of TinyBuilder, with-
out the details that are only relevant for diagnosing problems. The user guide begins with the
TinyBuilder script, which is a simple and elegant way to describe a build, followed by the method
used to construct command lines. The user guide continues with a brief description of the build
log format, an xml based format designed to be both human and machine readable. The client
and agent chapters of the user guide describe how to use those components, and finally, the user
guide ends with a brief story describing the evolution of a fictional build.

The reference guide is intended to be useful only on the occasions when a difficult problem
needs to be solved. The reference guide begins with a detailed explanation of the parser, which
is helpful for explaining text encoding issues and error messages, followed by a comprehensive
description of the build log format. The next chapter goes into a detailed explanation of the
operation of the TinyBuilder service and agent, for use by system administrators who wish to
diagnose problems or run tests on exotic platforms. The reference guide ends with a chapter
detailing the integration of ssh into TinyBuilder to provide authentication and encryption.

The man pages are intended to be a quick reference where they are available. While not par-
ticularly informative, they will provide the exact spellings of environment variables and com-
mand line options. They can also serve as a prompt for more complex concepts explained else-
where. While not normally used, the man pages will provide the command line interface of the
service executables on Linux and macOS; the Windows service and agent have no command line
interface.

2

The Script

The foundation of the TinyBuilder script is the job; the job specifies a list of input files, a list of
commands and parameters, and a list of output files. The input files are transferred from the
client to the machine, the commands are run on the machine, and the output files are transferred
from the machine to the client. A job is self contained; it runs within a work area, which is a con-
text that is completely specified by the job; other jobs that happen to be running on the machine
have no effect. The current directory used by the commands corresponds to the directory of the
script containing the job; the input and output files have the same relative location on the client
and in the work area.

The TinyBuilder script is structured as a set of blocks; a block’s contents are given a greater
indention than the line starting the block. The block ends when a line with a lesser indention is
read. The block is a recursive concept; each sub block is terminated when the indention of the
next line is equal or smaller.

Each block may be thought of as having a type. The contents of a block depend on the block
type; the contents of a block may be strictly content, or they may be keywords identifying inner
blocks with their own type. Usually, an inner block of the same type may be specified more than
once within the same outer block; subsequent inner blocks add to the original block of the same
type.

While input files, commands and output files can be specified explicitly within a job block,
doing so does not make creating any other job easier. Instead, lists of files may be specified in a
file list block, command line parameters may be specified in data blocks, and sequences of com-
mands may be specified in step blocks. Each job may then include these blocks, so jobs can be
updated by changing the blocks they include.

Command line parameters are specified by assigning values to names. Each assignment to a
name adds to the name; an assignment never replaces a value. A name becomes a command line
parameter by expanding the name. Names may be assigned a data value, which are not inter-
preted by TinyBuilder, or names may be assigned a path value, which are converted into paths
located relative to the job’s directory. Expansion options affect how a name is expanded, i.e. each
expansion is in its own command line or within a single command line.

Jobs may be included into projects as a build or a test job. Build jobs have output and will
be considered up to date after they are run; they do not need to run again unless their input is
updated. Test jobs generally do not have output when they succeed; only their exit status is used

3

The Script

instead. Test jobs will run as many times as requested, even if no input to the job has changed.

Each job is assigned one or more machines; a machine is like a server, and probably is one.
However, TinyBuilder uses the term machine because while a job may run on a massive build
server servicing hundreds of clients, a machine may also be a small deployable device used exclu-
sively for testing. The script may specify a list of machines for a job so the job load balances
between the machines, or the job may run on all the machines.

A single build may make use of multiple TinyBuilder scripts, each imported into a single build
script. When imported, the build scripts may be located alongside the code they use. File paths
remain relative to the script specifying the paths, which can be a different directory than the
script specifying the job.

After the jobs have all been run, the client constructs a build log, which contains information
pertaining to its connections, jobs and commands. The build log is designed to be at least as
useful as running the commands interactively, and is frequently better. Output from commands
run by the job is never lost and frequently do not even require the command to block; the pipe
between the process and the TinyBuilder server is a wide one. The build log is formatted in a
human readable form of XML.

The Job

The fundamental unit of the TinyBuilder script is the job; no work can be done without one. The
job reads a set of input files on the client, runs a set of commands on the machine and writes a set
of output files on the client. All paths and commands are relative to the directory of the script
containing the job block; all files must be specified using relative directories.

The job block is started with the text job with no indention. Immediately following the job
keyword is the name of the job. The name may be any text that can be expressed by utf-8 except
for the new line. The name is matched byte by byte; no case folding, composition or decomposi-
tion is done when comparing names.

A minimal TinyBuilder script would look something like this:

job minimal job
 input
 main.c
 module1.c
 module2.c
 module1.h
 module2.h

4

The Script

 values
 compiler options = -O3
 compiler options = -m64
 compiler options = -g
 compiler options = -I.
 link options = -m64
 link options = -g
 paths
 source file = main.c
 source file = module1.c
 source file = module2.c
 executable = program
 command break on error
 gcc
 <compiler options>
 -o
 <<base name, enumerate>source file>.o
 <<enumerate along>source file>
 gcc
 <link options>
 -o
 <executable>
 <<base name>source file>.o
 output
 program
 machine
 builder

As explained in more detail below, when minimal job is executed, main.c, module1.c,
module2.c, module1.h and module2.h are compressed into the input archive and sent
to the TinyBuilder server named builder. All the input files are must be in the same directory
as the TinyBuilder script containing minimal job or the job will refuse to start. The current
directory is created within a work area on the server and the input archive is extracted relative
to that directory.

The following command lines are executed within the current directory within the work area
on builder:

gcc -O3 -m64 -g -I. -o main.o main.c
gcc -O3 -m64 -g -I. -o module1.o module1.c
gcc -O3 -m64 -g -I. -o module2.o module2.c

5

The Script

gcc -m64 -g -o program main.o module1.o module2.o

Each command line starts after the previous command line has completed; no parallel execution
is performed within a job. Since the command gcc is specified without a directory, it must be
found on the server using PATH. Assuming all of the gcc invocations are successful, a com-
pressed output archive consisting only of program is created and transferred to the client. The
file program is extracted from the archive into the same directory as the script containing
minimal job and the j0b is successfully completed.

The input block provides a list of input files used by the job. The client produces an input
archive from the list of input files and transfers the archive to the machine. All of the files listed
in the input block will be available for use on the machine before the first command is started, in
the same relative location as the script defining the job.

Each job has a failed flag which is set if a command within a command break on error
or command complete with error block returns a non-zero value. Once the failed flag
is set, commands within a command complete with error and command ignore
error block will be executed to the end of the block; a failed command in a command break
on error block will cause the job to stop immediately. Like other blocks, each new command
block adds commands to the job in sequence.

A command has zero or more command line parameters. The parameter list is a block within
the command, with each parameter terminated by the new line. Any character may be specified
in a parameter except for a new line, ‘<’ or ‘>’; there is no escaping or quoting. Note that output
redirection cannot be done within a command block. While the command block may run a script
that redirects the output of a command, it is generally better to allow the output to appear in the
build log; no output from a command is lost.

The ‘<’ and ‘>’ characters act as delimiters to specify an expansion. An expansion replaces the
sequence ‘<’, the name and ‘>’ with all the values that have been assigned to that name. Each
expansion, combined with any text provided, become a command line parameter passed to the
command. If the name has no expansions, the text is passed as the parameter, or if there is no text
and no expansion, no command line parameter is passed.

A list of output files are provided in the output block. The files are specified in a directory
relative to the script defining the job; if an output file does not exist in the work area after the last
command completes, the job fails. The machine creates an output archive from the files in the
work area and transfers the archive to the client. The client extracts the files using paths relative

6

The Script

to the script defining the job.

There are several aspects of minimal job to be noted. First, while minimal job is
building a program, the job has no knowledge that it is compiling anything. All it knows is the
job has files for input, the command lines that need to be executed and expected output files. A
different job could test program on builder to ensure program successfully runs.

Secondly, adding a source file does not scale nicely; source files must be added to both the
input and as a source file path value. We will see how to fix that with a file list block
later.

Thirdly, this job is completely self contained; it is unaffected by any changes to any other jobs
in the same script. This is a good thing if building program requires unique options. However,
this is rarely the case. We will see how to fix that with the data block later.

Fourthly, it would seem likely that a similar command line sequence to the one used in
minimal job could be used for other jobs that are compiling other programs. When spec-
ified in a command block in the job, the command line sequence cannot be shared. We will see
how to create common command line sequences with the step block later.

Fifthly, if building program was the only goal, a shell script would work nicely; any powerful
build system like TinyBuilder would be overkill. More likely, program exists within a large eco-
system of other programs and libraries that also need to be built, along with a set of test programs
to build and run automatically. We will see how to handle that with the project block later.

Data

Data blocks create name/value pairs within a job; this data is used within command blocks to
specify commands and parameters. Within a command block, a name is specified between ‘<’
and ‘>’ which is expanded to the value(s) associated with the name. If the name has not been
assigned the command or parameter is skipped. If the name has been assigned more than once,
the command or parameter is repeated once per value, in assignment order. Any additional text
on the same line as an expansion is part of the command or parameter and is repeated per assign-
ment. Multiple expansions in the same line are permitted. Data assignments are created as the
script is parsed and expansions are done as the job runs. As a result, assignments within the script
may occur before or after the command blocks within the script and all assignments will still be
used.

A name may be assigned data or path values, not both. Within a job block, data values are
specified within a values block; path values are specified within a path block. The differ-
ence between data and path values are in how they are expanded. Data values are treated strictly

7

The Script

as text; expansion values are literal; no interpretation of the expansion text is made. Path value
assignments tell the TinyBuilder client to expand each value as a path; valid path separators on
the client are converted into valid path separators on the machine and extensions can be removed
and replaced. Unlike data, where adjacent expansions simply append values, adjacent path value
expansions are separated using valid path separators on the machine.

A comma separated list of expansion options may be specified within ‘<’ and ‘>’ within the `<’
and ‘>’ of an expansion. The following expansion options are supported:

required: If the name has no assignments, the command is skipped, not just the parameter.
For example, if a compiler is invoked with no source file, it will fail with an invalid command line.
If the required expansion option is specified in the source file expansion, the compiler will
not be invoked

environment: The name does not specify a data name, instead, it specifies an environment
value on the machine. For example, if the command were <<environment>CC> the com-
mand would be specifying the default C compiler on the server. An environment expansion
must be by itself, with no accompanying text; the client does not know how to expand it since it
is expanded on the machine; the client can only send the name of the environment variable to use.

enumerate: When specified within a parameter, the command is executed once per assign-
ment. When specified within an executable name, the option is ignored. For example, the com-
piler is typically invoked a source file at a time; its expansion would use the enumerate expan-
sion option. The linker, on the other hand, is passed a list of all the source files; its expansion
would not use the enumerate expansion option.

enumerate within name: When enumerating more than one name, an order must be
provided. All enumerations must be in a nesting order; there may not be any cycles in the order.
The outermost enumeration is specified with the enumerate option. Each enumeration
within the outermost enumeration must specify the expansion to expand within. For example, if
name1, name2 and name3 each have two assignments, the command block:

command
 <<enumerate>name1>
 <<enumerate within name1>name2>
 <<enumerate within name2>name3>

which would result in the following command line sequence:

command name1-value1 name2-value1 name3-value1
command name1-value1 name2-value1 name3-value2

8

The Script

command name1-value1 name2-value2 name3-value1
command name1-value1 name2-value2 name3-value2
command name1-value2 name2-value1 name3-value1
command name1-value2 name2-value1 name3-value2
command name1-value2 name2-value2 name3-value1
command name1-value2 name2-value2 name3-value2

The enumerate within expansion option ensures clarity and control regarding how mul-
tiple enumerate expansions are expanded.

enumerate along name: When the same name is enumerated within the same command
multiple times, the first expansion of the name must be have the enumerate expansion option
and all subsequent expansions of the same name must be enumerate along. For example,
if name1 has two assignments, the command block:

command
 <<enumerate>name1>
 <<enumerate along>name1>

would result in the following command line sequence:

command name1-value1 name1-value1
command name1-value2 name1-value2

directory name: For path values, the file name value is stripped from the value’s expansion.
If the resulting path is empty, the assignment is discarded. The expansion option is ignored for
data values.

file name: For path values, the directory part of the path is discarded. If the resulting path is
empty, the assignment is discarded. The expansion option is ignored for the data values.

base name: For path values, the extension is stripped from the file. The expansion option is
ignored for data values. New extensions may be specified as text after the expansion. The ‘.’ is
dropped along with the extension, so the text needs to specify a new ‘.’.

9

The Script

Assigning Data and Paths

The data block is used to share data and path values among multiple jobs. The data block
is started with the text data with no indention. Immediately following the data term is the
name of the data block. The name of the data block may be any text that can be expressed by
utf-8 except for the new line. The name is matched byte by byte; no case folding, composition or
decomposition is done when comparing names.

To update the minimal job example earlier to use data blocks, the job could be:

data compiler options
 values
 optimization = -O3
 option = -m64
 option = -g
 option = -I.

data linker options
 values
 link options = -m64
 link options = -g

data compiled files
 paths
 source file = main.c
 source file = module1.c
 source file = module2.c

job data block job
 input
 main.c
 module1.c
 module2.c
 module1.h
 module2.h
 include data with name compiler options
 compiler options
 include data
 linker options
 compiled files
 paths
 executable = program

10

The Script

 command break on error
 gcc
 <compiler options>
 -o
 <<base name, enumerate>source file>.o
 <<enumerate along>source file>
 gcc
 <link options>
 -o
 <executable>
 <<base name>source file>.o
 output
 program
 machine
 builder

In the above example, the settings have been moved into data blocks and so may be used by other
jobs using include data blocks. When the compiler options data block is included
into data block job, the assignments to optimization and option are changed to
compiler options by the with name modifier. When the linker options and
compiled files data blocks are included into the job, the names as well as the values are
preserved. Within the command break on error block, the names between ‘<’ and ‘>’
are expanded, replacing the names with their assignments.

Just as within a job block, the values block within the data block is used to assign values
to data names. An assignment within a values block may not assign to a name with existing
path assignments. The name may include any character except ‘=’ or the new line. The name
is matched byte by byte; no case folding, composition or decomposition is done. The values
assigned to a data value are not interpreted and always remain the same text as the assignment
when they are expanded.

Just as within a job block, the paths block within the data block is used to assign path
values to names. An assignment within a paths block may not assign to a name with existing
data assignments. The name may include any character except ‘=’ or the new line. The name is
matched byte by byte; no case folding, composition or decomposition is done. Any path separa-
tors in a path value are changed to reflect the path separator used by the machine, but the path
separator in the script must be valid for the client. At present, the ‘/’ character is a valid path
separator for all platforms supported by the TinyBuilder client.

A job always has a data block with zero or more names with assignments. It is possible to
include the assignments of a data or a file list using an include block. The contents

11

The Script

of the include block is a list of data or file list block names. The assignments in the
included data block are added to the names already in the data block of the job. The with
name modifier may be used to assign all assignments in the included data block to the same
name within the job data block. A file list may be included into a data block as a series of
assignments to a path value when the file list is included using the with name modifier.

The assignments maintain their order, so when a name is expanded, it will be expanded in the
same order as the assignments to the name. When a data or file list block is included,
its assignments are made in the same position as the include block. Any number of values,
paths and include blocks may be specified within a job; the assignments will be added and
expanded in order.

The File List

Frequently, a set of files is used more than once within a TinyBuilder script. To allow one change
to affect all users of the set of files, the file list block may be used. The file list is started
with the text file list with no indention. Immediately following the file list term
is the name of the file list. The name of the file list may be any text that can be expressed by
utf-8 except for the new line. The name is matched byte by byte; no case folding, composition or
decomposition is done when comparing names.

To update the minimal job example earlier to use file lists, the job could be:

file list source files
 files
 main.c
 module1.c
 module2.c

file list header files
 files
 module1.h
 module2.h

job file list job
 include input
 source files
 header files
 values
 compiler options = -O3
 compiler options = -m64

12

The Script

 compiler options = -g
 compiler options = -I.
 link options = -m64
 link options = -g
 include data with name source files
 source files
 paths
 executable = program
 command break on error
 gcc
 <compiler options>
 -o
 <<base name, enumerate>source files>.o
 <<enumerate along>source files>
 gcc
 <link options>
 -o
 <executable>
 <<base name>source files>.o
 output
 program
 machine
 builder

In the above example, the source files have been moved to a file list and the headers have been
moved to their own file list. Two lists are needed because the source files are both required as
input to the job and are used as command line arguments to the compiler, while the header files
are needed as input, and are not passed as compiler arguments. The include input block
does not accept file names like the input block, instead, the contents of the include input
block is a list of file list names. The include data block may include either a file list
or a data block; in this case, it includes a file list into the job and assigns each path in the file list
to the source files name.

The file list block may have zero or more files or include blocks. The contents of
the files sub block is a list of files. The path of the files is relative to the directory of the script
containing the file list block. The contents of the includes block is a list of file
list block names. The files in the included file list are incorporated into the file list
block in the position they were included. The path of the included files remain the same; inclu-
sion does not change the path of files within the list; they remain relative to the script containing

13

The Script

the included block.

When included into a data block, the file list maintains its order, so when the path value is
expanded, it will be expanded in the same order as the file list. When a file list is included,
its files are inserted into the including file list in the same position as its includes block. Any
number of files and includes blocks may be specified within a file list block; the
files will still be added in order.

Path Concatenation

Path values will be concatenated into a single valid path when two adjacent path values are
expanded. Each expansion is considered to be a member of the path, with path separators placed
between the expansions, when there is no text between the expansions. For example:

job example job
 paths
 dir = ../dir
 file = ../other_dir/file
 command break on error
 program
 --file=<dir><file>

However, the above example may not work as intended because of the way path values are
expanded by TinyBuilder. In this case:

<dir><file>

becomes:

../dir/../other_dir/file

which becomes

../other_dir/file

The way to fix the expansion is to add the file name expansion option, so the line reads
--file=<dir><<file name>file>. In this case, dir is still expanded to ../dir, but

14

The Script

the directory is stripped from file so the expansion is ../dir/file after concatenation.

Note that the problem will also occur in this example:

../other_dir/files.tb:

file list files
 files
 file

main.tb:

import ../other_dir/files.tb

job example job
 paths
 dir = ../dir
 include data with name file
 files
 command break on error
 program
 --file=<dir><file>

The problem occurs because the file list is in the ../other_dir directory, so when the path
is included into the job, the files path value is assigned ../other_dir/file.

Defining Common Commands

The step block specifies a sequence of commands that may be shared among jobs. The step
block is started with the text step with no indention. Immediately following the step term
is the name of the step. The name may be any text that can be expressed by utf-8 except for the
new line. The name is matched byte by byte; no case folding, composition or decomposition is
done when comparing names.

To update the minimal job example earlier to use a step, the job would be:

step compile with gcc
 parameters
 source files
 compiler options

15

The Script

 link options
 executable
 command break on error
 gcc
 <compiler options>
 -o
 <<base name, enumerate>source files>.o
 <<enumerate along>source files>
 gcc
 <link options>
 -o
 <executable>
 <<base name>source files>.o

job step job
 input
 main.c
 module1.c
 module2.c
 module1.h
 module2.h
 values
 compiler options = -O3
 compiler options = -m64
 compiler options = -g
 compiler options = -I.
 link options = -m64
 link options = -g
 paths
 source file = main.c
 source file = module1.c
 source file = module2.c
 executable = program
 include step compile with gcc
 source file
 compiler options
 link options
 executable
 output
 program
 machine
 builder

16

The Script

In the above example, the commands have been moved to a step where other jobs can make
use of the same command sequence. The named values are passed as a list of parameters to the
compile with gcc step. Each parameter in the step becomes an alias for the name in
the same position in the include step block. For example, the source files param-
eter takes on the assignments of the source file path value in the job, the compiler
options parameter takes on the assignments of the data value compiler options, and
so on. The expansions within the step behave exactly as they do in a command block. Commands
within the step are inserted into the command sequence of the job where the step is included.

The command block within the script specifies a series of commands that are to be executed
in sequence with the same error handling. Each command block adds to the list of commands
within the job; after parsing is complete, the job contains a single command sequence. The parser
flattens the job structure as it parses the script; each command is given the error handling from
its block. Commands that originated from steps are also copied into the job; those commands
also receive their error handling from their block; the fact that the commands were included into
the job is irrelevant. As a result, the error handling of any failed command is specified only by the
owning block. The error handling of the block is specified after command; the possible values
are as follows:

Flag Meaning
break on error If the return value of the command line is non-zero, the job
 is marked as failed and no other commands are executed.
complete with error If the return value of the command line is non-zero, execution
 continues until the end of the block is reached; at which point
 the job fails, regardless of any subsequent return values.
ignore error The return value of the command line is ignored; it is
 impossible for the job to fail based on a command return value.

The step block may also make use of the include step block. Just as when used in a job
block, the step name is specified after the include step text. Parameters passed to the
including step may be passed to the included step; only parameters to the including step may be
passed to the included step. The parameters in the included step are aliased to the same job data
names in the job including the including step.

Environment Blocks

Normally, each job inherits its environment variables directly from the service. Some tools,
however, require that environment variables be setup in a particular way. To allow job specific

17

The Script

environment changes, environment blocks may be specified. All the changes to the environment
are local to the job only; they do not affect the service or any other job. The value assigned to a
name in the environment block may replace, prefix or suffix the environment value with that
name. The environment changes are applied in replace, prefix, suffix order, regardless of the
placement of the blocks or the order of the assignments.

To prefix a value to an environment variable, an environment prefix block is used. For
example, to add /root to the beginning of the PATH variable, add to the job:

 environment prefix
 PATH = /root:

Note that in this case, the ‘:’ is needed to separate the directory from the start of the current
value of PATH.

To replace the value of an environment variable, an environment replace block is
used. For example, to set the PATH variable to /root, add to the job:

 environment replace
 PATH = /root

Note no ‘:’ is needed since no other directory will be in the PATH after the value is replaced.

To suffix a value to an environment variable, an environment suffix block is used. For
example, to add /root to the end of the PATH variable, add to the job:

 environment suffix
 PATH = :/root

Note the ‘:’ needs to be at the beginning of the suffixed value to separate the directory from the
last directory in the path.

Using Visual Studio

The Visual Studio tools require a development command prompt to run. The difference between
the development command prompt and a normal command prompt is a set of environment vari-
ables have been set to allow the tools to run correctly. If cl.exe is invoked without specifying

18

The Script

a development environment block, the executable will not be found.

A development environment block has the same effects as the environment
blocks, in that the environment variables used within a job using a development envi-
ronment block are different from other jobs. The difference is the environment variable
changes are specified on the server side, not the client side. The Visual Studio installations may
be in different locations from server to server, but the development environment block
will have the same effect.

The Windows service install uses vswhere to find installations of Visual Studio and create a
set of development environments that can be expected to work on the server. The name of each
development environment follows the convention VS.<version>.<architecture>,
with version set to the Visual Studio version and architecture set to the Visual Studio
architectures that may be supported. At present, the version/Visual Studio mapping is as follows:

 Version Visual Studio Product
 7 Visual Studio .NET 2003
 8 Visual Studio 2005
 9 Visual Studio 2008
 10 Visual Studio 2010
 11 Visual Studio 2012
 12 Visual Studio 2013
 14 Visual Studio 2015
 15 Visual Studio 2017
 16 Visual Studio 2022

The installation will only create development environments for the versions vswhere finds on
the server.

The architecture will be one of:

 Architecture
 x86 x86.store x86.uwp
 x64 x64.store x64.uwp
 arm arm.store arm.uwp
 arm64 arm64.store arm64.uwp
 amd64

The installation does not check that the Visual Studio installation can support all the possible

19

The Script

architectures; all will be added unconditionally.

The development environment block is specified by the text development
environment followed by the development environment name. Only one development
environment block may be specified in a job. For example, to build a 64 bit executable with
Visual Studio 2019:

job 64 bit Windows program
 development environment VS.16.x64

The development environment is only supported on Windows; the job will fail if a develop-
ment environment is set in a job sent to a non-Windows machine or if the development environ-
ment is not setup by the service installation. To make use of a new Visual Studio installation on
the Windows server, the TinyBuilder service will need to be reinstalled.

Retrieving Files from Failed Jobs

Sometimes when a job failed, files produced by the job are needed to debug the job failure, e.g.
intermediate test data or core files. Such files can be listed in the failed output block.

When the commands of a job all succeed, the job will attempt to download all files listed in
the output block and no attempt is made to obtain any of the files in the failed output
block. If any file listed in the output block is missing from the work area, the job will fail.

When a job failed, no attempt is made to download the files in the output block, but an
attempt is made to obtain each file in the failed output block. If a file in the failed
output block is missing, the file is skipped and the rest of the list will be transferred to the client

Specifying Common Machines

The machine block is started with the text machine with no indention. Immediately following
the machine term is the name of the machine; the name is treated distinctly by TinyBuilder; a
machine block name may be the same as the name of another block such as a job or data
block, but not the same as the name of another machine block. The name may be any text that
can be expressed by utf-8 except for the new line. The name is matched byte by byte; no case
folding, composition or decomposition is done when comparing names. The name has no rela-
tion to any name/ip address resolution; it is never passed to the operating system. If the name of
the machine block is the same as a host name, the machine block will be used, not the host

20

The Script

name, when the host name is specified within a machine block within a job block.

Unlike the machine block within a job block, where the name is simply a host name or
machine block name, each machine within the machine block is specified as a url. The
scheme specifies one of the protocols supported by TinyBuilder. The host name of the url is
used to determine the ip address of the machine; a port may be specified after the host name
using the ‘:’ character. If no port is specified, the default tcp port 5017 is used. None of the pro-
tocols support authentication or a path in their url’s.

The machine block contains a list of target machines, each specified by a url; TinyBuilder
will load balance among the list. Each target machine is reached by a path, and each path consists
of one or more hops. Each path block within the machine block contains a path of hops; the
last hop in the list is the target machine. Requests and responses will pass through each machine
in the list, to be serviced by the target machine. For example, to reach the agent running on
buildserver1, the interactive builder machine block would use the following:

machine interactive builder
 path
 tb://buildserver1
 tbi://localhost

Most paths, however, are single hop paths. The path list block may be used to list a set of
single hop paths. Within the path list block, all the url’s are target machines acting as part
of a server pool for load balancing. For example, the following builder block would randomly
assign jobs to one of two servers, buildserver1 or buildserver2:

machine builder
 path list
 tb://buildserver1
 tb://buildserver2

It is possible to specify a single hop path using a path block. For example:

machine builder
 path list
 tb://buildserver1
 tb://buildserver2

21

The Script

would be equivalent to:

machine builder
 path
 tb://buildserver1
 path
 tb://buildserver2

Either a path block or a path list block may be used to specify one single hop path; the
path list block is simply a more compact alternative when specifying more than one single
hop path for load balancing.

It is useful to know exactly which machine ran a job in the build log; the script does not specify
which path will be used when more than one path is provided in the machine block. Within
the build log, each job is given a path ID, which together with the machine block name, uniquely
identifies each path in the script. The path ID is an integer, starting with zero, and incremented
for each path specified in the block. In the last example, tb://buildserver1 would be
given a path ID of zero, and tb://buildserver2 would be given a path ID of one.

The url’s may be one of three schemes:

Scheme Protocol
tb The TinyBuilder protocol is used to directly connect to the TinyBuilder machine. The
 communication is in plain text; packet capturing could be used to recover all source
 in the input archives and all the binaries in the output archives, as well as all output
 from any commands executed. A man in the middle attack could silently change
 requests to the machine and responses from the machine. No authentication is done.
 The connection relies completely on network security. This scheme is used by default.
tbs ssh port forwarding is used to connect to the TinyBuilder server over an ssh
 tunnel. The connection is as secure as ssh port forwarding. Authentication is
 provided by ssh. This requires sshd to be installed and configured on the server
 and ssh installed on the client. The TinyBuilder client will generate an ssh
 command line to establish a tunnel between itself and sshd on the server.
tbi The url specifies an agent; the host name of the url must be localhost. No port may
 be specified. The agent runs in the ui context of the user logged into the machine
 specified by the previous hop in the path. This scheme may not be used as the first hop
 in any path. See The Agent chapter of this user guide for more details.

22

The Script

Specifying a Machine for a Job

The machines block in the job block specifies the TinyBuilder machine(s) to run the job.
TinyBuilder uses the term machine instead of server because while the client will connect to
computers that could reasonably be called servers, it may also connect to small devices for test-
ing. The term machine emphasizes the broad range of connection targets.

The machine block is required within the job block; every job must have at least one
machine path. The simplest way to specify the machine running the job is to specify a host name
or ip address in the machine block within the job block. When specified this way, the job
will run over an insecure, default protocol connection with a single hop to the address specified
within the block. If the machine block within the job block specifies multiple machines, the
job will run on all the specified machines.

The machine block within the job block may also specify the name of a machine block,
which is a block that may be shared among jobs. A machine block permits the specification
of the protocol used to connect along with any hops that may be necessary to reach the target
machine. When an ip address or host name is provided within the job block’s machine block,
the parser automatically creates a default machine block with the same name as the address. If
the default protocol is no longer desired, a machine block may be specified explicitly with the
same name as the host name, and it will be used instead.

The address specified in the machines block is resolved to an address using the operating
system. For example:

machine test machine 1
 paths
 tb://test1

job test job
 machines
 test machine 1
 test2

In the above example, test job will be run on both servers with the dns names test1 and
test2.

Effectively, a machine block name overrides a host name when used within a job block. For
example, to redirect the builder server used in minimal job to use the loopback, provide

23

The Script

this machine block before the job:

machine builder
 path
 tb://localhost

Note that the job block does not change when it is redirected to another server using a machine
block.

To have minimal job run on one of two servers using ssh port forwarding, the following
machine block may be used:

machine builder
 path list
 tbs://builder
 tbs://builder-backup

Controlling Machine Utilization

The TinyBuilder service is a finite resource and if it is over utilized, various scripts and programs
used as part of the build will fail due to lack of resources. Frequently, the result is a mysterious,
intermittent build failure with strange or non-existent error messages. To prevent these failures,
the TinyBuilder service protects itself against usage spikes by limiting the number of concurrent
jobs that may run on the machine.

Some jobs are more resource intensive than others. For those jobs that are unusually resource
intensive or those that are unusually quick, a concurrency block may be specified. The
concurrency block is a single line block with no sub block. For a typical compilation job, no
concurrency block is necessary. A job block may have zero or one concurrency blocks,
which specifies how much of the machine should be consumed by a job. If the job, along with the
other jobs already running on the server, would consume more than the entire machine, the job
is delayed until the server has the capacity to start the job.

For example, a highly resource intensive test job could look like this:

job program test
 concurrency minimum
 input
 program

24

The Script

 commands break on error
 program
 test-mode
 machine
 builder

In the concurrency context, the machines utilized are actually called abstract servers; the service
installation configures each core on the machine to act as an abstract server. Agent utilization is
separate from the service utilization. See the TinyBuilder Service chapter of the reference guide
for more details.

The valid concurrency values are:

 Value Abstract Server Percentage Consumed
 minimum 100%
 low 50%
 medium (default) 9.8%
 high 3.9%
 maximum 0.4%

Projects

The project block permits jobs and projects to be consolidated so that when a project is run,
all of the jobs contained within the project may be run. The project block is started with the
text project with no indention. Immediately following the project term is the name of
the project. The name may be any text that can be expressed by utf-8 except for the new line.
The name is matched byte by byte; no case folding, composition or decomposition is done when
comparing names.

Unlike the other blocks, the order of jobs within the project are not taken into account; all jobs
that can run are run immediately. If an input file to the job is the output of another job within
the project, the job requiring output from a job will wait until the output is generated. If the job
creating the output failed, the job requiring the input file will not run, even if an older version of
the input file is available. Do not create jobs where an input file and an output file have the same
path; the job will never run in this case. That includes larger cycles, such as when job A creates
a file needed by job B and job B creates a file needed by job A; neither job A nor B will ever run.

By default, the TinyBuilder client observes what is referred to as make scheduling. Like the
venerable utility make, when using make scheduling, if all input is older than the oldest output of
a job, the job is considered up to date and is not run; such a job is called make complete. When a

25

The Script

job does not need to run, any output is considered to be up to date, so any jobs depending on the
output will be considered ready. However, make scheduling does not take the modification date
of any TinyBuilder script into account, so any script changes will require the job to be rebuilt.

By default, the TinyBuilder client will run the project or job named main. If this is not pre-
ferred, a job name can be specified on the TinyBuilder client command line, in which case, the
job will run, even if it is up to date according to make scheduling. If a project is specified on the
command line, the associated jobs will be run according to make scheduling. If a project is spec-
ified on the command line and the --rebuild command line option is specified, all jobs in
the project are run, even if they are up-to-date. The --rebuild command line option will not
force a job to run if its input could not be built, but specifying the job explicitly on the command
line will run the job if all input is present, regardless of the input file modification time.

The project block contains zero or more builds or tests blocks. Jobs listed within
the builds block are executed according to make scheduling. The jobs listed in the tests
block are never considered to be up to date when make scheduling is in use. The intent of the
tests block is to specify jobs that are to be run even if nothing is to be built, such as jobs run-
ning automated tests. If a project specified in the tests block has its own builds block, the
jobs in the included block will behave as if they are in a tests block.

Importing Other Scripts

A script may be imported into another script. When this is done, it is as if the text from the
imported script brought into the importing script, similar to the C #include preprocessing
directive.

The import block is used to import scripts. The import block is started with the text
import with no indention, followed by a file path. The file path is relative to the script contain-
ing the import block. There is no content in the import block. If a script is imported more
than once, only the first import attempt will be done; all subsequent attempts to import the same
script will be silently ignored.

Comments

If the first non-whitespace character in a line is the `#` character, then the line is a comment. For
example:

data data block
This is a comment
 # This is also a comment

26

The Script

 values
 name = value # This is part of the data value
This comment does not terminate the values block
 name = value2

27

Command Generation

This chapter describes how command lines are generated while jobs are running. A command
is a member of a command block in the script. A command line is an executable name and com-
mand line arguments passed to the server and executed. Each command line is derived from
the command along with data values and path values just before the command is run. While the
command is running, no other command may run within the job. After a command is complete,
its return value is used for any error handling.

When the conversion of a command to a set of command lines starts, each name is searched in
the job’s data assignment database; each name is replaced by the assignments to that name. If the
name is not found among the assignments in the job, the name is considered to have no assign-
ments, and no failure occurs. For example, the following job:

job example 1
 commands break on error
 command
 <unset name>
 machine
 localhost

would execute the command line:

command

The required expansion option will cause the command to be skipped if there are no expan-
sions for the name. For example:

job example 1a
 commands break on error
 command
 <<required> unset name>
 machine
 localhost

28

Command Generation

would succeed without executing any commands. The enumerate expansion option has the
same results, but for a different reason. The required expansion option results in one or zero
command lines. The enumerate expansion option creates one command line per expansion,
zero being a valid number of expansions.

A command line parameter may also contain text. The text is replicated per expansion, and
used once if there is no expansion. For example:

job example 2
 commands break on error
 command
 --file=<unset name>
 machine
 localhost

would execute the command line:

command --file=

While the job:

job example 2a
 paths
 file = file1
 commands break on error
 command
 --file=<file>
 machine
 localhost

would execute the command line:

command --file=file1

and the job:

job example 2b
 paths

29

Command Generation

 file = file1
 file = file2
 command break on error
 command
 --file=<file>
 machine
 localhost

would result in the command line:

command --file=file1 --file=file2

It is permissible for a command line parameter to only be text. For example:

job example 3
 commands break on error
 command
 --file
 <unset name>
 machine
 localhost

would execute the command line:

command --file

While the job:

job example 3a
 paths
 file = file1
 commands break on error
 command
 --file
 <file>
 machine
 localhost

30

Command Generation

would execute the command line:

command --file file1

and the job:

job example 3b
 paths
 file = file1
 file = file2
 command break on error
 command
 --file
 <file>
 machine
 localhost

would result in the command line:

command --file file1 file2

The last example demonstrates that there is no relationship between the command line parame-
ters; the previous parameter is not replicated per expansion.

Note that the space is simply text within the command line parameter; it has no special signif-
icance. A mistake that is easy to do is the following:

job example 3c
 paths
 file = file1
 file = file2
 command break on error
 command
 --file <file>
 machine
 localhost

which would result in the command line:

command '--file file1' '--file file2'

31

Command Generation

when the intent was to make --file and the file name separate parameters like example
3b.

The enumerate expansion option causes TinyBuilder to create a command line per expan-
sion of the name; zero expansions is an acceptable number of expansions. Other expansions
within the same command line are unaffected by the enumerate expansion option and are
repeated for each command line. For example:

job create archive 0
 paths
 files = file1
 files = file2
 files = file3
 command break on error
 tar
 -czvf
 <<enumerate> archive>
 <files>
 machine
 localhost

The create archive 0 job would succeed without executing any commands since
archive has no assignments.

job create archive 1
 paths
 files = file1
 files = file2
 files = file3
 archive = output.tgz
 command break on error
 tar
 -czvf
 <<enumerate> archive>
 <files>
 machine
 localhost

32

Command Generation

Would execute one command line:

tar -czvf output.tgz file1 file2 file3

and the following:

job create archive 2
 paths
 files = file1
 files = file2
 files = file3
 archive = output1.tgz
 archive = output2.tgz
 command break on error
 tar
 -czvf
 <<enumerate> archive>
 <files>
 machine
 localhost

would execute two command lines:

tar -czvf output1.tgz file1 file2 file3
tar -czvf output2.tgz file1 file2 file3

It is possible for a single command line to have multiple enumerate expansions, but one must
be nested within the other using the enumerate within expansion option. The first com-
mand line will use the first expansion of the outer and inner enumerate expansions, then the
first outer and second inner expansions, continuing until all the inner expansions are exhausted.
Then the second outer and first inner expansions are used. This continues until all the possible
expansions are used. If any name has no expansions, no command lines are executed. Embedding
enumerate expansions within other enumerate expansions may be done to any depth.

For example, the following job will not execute any command lines:

job create archive directories 0
 paths
 files = file1
 files = file2
 files = file3

33

Command Generation

 archive = output1.tgz
 archive = output2.tgz
 command break on error
 tar
 -C
 <<enumerate> directory>
 -czvf
 <<enumerate within directory> archive>
 <files>
 machine
 localhost

The following will execute two command lines:

job create archive directories 2
 paths
 files = file1
 files = file2
 files = file3
 archive = output1.tgz
 archive = output2.tgz
 directory = subdir1
 command break on error
 tar
 -C
 <<enumerate> directory>
 -czvf
 <<enumerate within directory> archive>
 <files>
 machine
 localhost

and the command lines are:

tar -C subdir1 -czvf output1.tgz file1 file2 file3
tar -C subdir1 -czvf output2.tgz file1 file2 file3

and the following will execute four command lines:

job create archive directories 4
 paths
 files = file1

34

Command Generation

 files = file2
 files = file3
 archive = output1.tgz
 archive = output2.tgz
 directory = subdir1
 directory = subdir2
 command break on error
 tar
 -C
 <<enumerate> directory>
 -czvf
 <<enumerate within directory> archive>
 <files>
 machine
 localhost

and the commands will be:

tar -C subdir1 -czvf output1.tgz file1 file2 file3
tar -C subdir1 -czvf output2.tgz file1 file2 file3
tar -C subdir2 -czvf output1.tgz file1 file2 file3
tar -C subdir2 -czvf output2.tgz file1 file2 file3

and we can reverse the enumerate within option to make the outer enumeration the
inner enumeration:

job create directory archives 4
 paths
 files = file1
 files = file2
 files = file3
 archive = output1.tgz
 archive = output2.tgz
 directory = subdir1
 directory = subdir2
 command break on error
 tar
 -C
 <<enumerate within archive> directory>
 -czvf
 <<enumerate> archive>
 <files>

35

Command Generation

 machine
 localhost

which will execute:

tar -C subdir1 -czvf output1.tgz file1 file2 file3
tar -C subdir2 -czvf output1.tgz file1 file2 file3
tar -C subdir1 -czvf output2.tgz file1 file2 file3
tar -C subdir2 -czvf output2.tgz file1 file2 file3

Sometimes, the enumerate expansion needs to happen more than once within the same
command line. To accomplish this, the enumerate along expansion option is used. For
example:

job enumerate along example
 paths
 files = file1
 files = file2
 files = file3
 directory = subdir1
 directory = subdir2
 commands break on error
 cat
 <<enumerate>directory><files>
 <<enumerate along>directory><files>
 machine
 localhost

Note that the script has no path separator between the directory and files expansions.
This is because they are path values and TinyBuilder will insert the correct path separator for the
machine running the job. This is discussed in more detail later in this chapter. The above job will
execute:

cat subdir1/file1 subdir1/file2 subdir1/file3 subdir1/file1\
subdir1/file2 subdir1/file3
cat subdir2/file1 subdir2/file2 subdir2/file3 subdir2/file1\
subdir2/file2 subdir2/file3

When using enumerate along, exactly one expansion must have the enumerate

36

Command Generation

expansion option, all of the rest must have the enumerate along expansion option.

When a non-enumerate expansion is expanded a command line option is added per expan-
sion. So in the above example, each files assignment is expanded as part of the <<enumer-
ate>directory><files> command line options before the next set of command line
options are added. The files expansion is repeated for each command line option that uses
the value; the same directory expansion is used due to the enumerate along expan-
sion option.

If we remove the enumerate expansion option from the previous example, we get:

job multiple expansions example
 paths
 files = file1
 files = file2
 files = file3
 directory = subdir1
 directory = subdir2
 commands break on error
 cat
 <directory><files>
 <directory><files>
 machine
 localhost

A single command line with the following command line parameters will be executed:

subdir1/file1 # expansions from the first line
subdir1/file2
subdir1/file3
subdir2/file1
subdir2/file2
subdir2/file3
subdir1/file1 # expansions from the second line
subdir1/file2
subdir1/file3
subdir2/file1
subdir2/file2
subdir2/file3

37

Command Generation

When multiple non-enumerate expansions are done within the same command line param-
eter, the leftmost expansion is the outer expansion, and the rightmost expansion is the inner
expansion. All possible expansions are done. Unlike enumerate expansions, command line
parameters are created when one of the names has no expansions. For example:

job multiple expansions example 2
 paths
 files = file1
 files = file2
 files = file3
 commands break on error
 cat
 <directory><files>
 <directory><files>
 machine
 localhost

would execute the following command:

cat file1 file2 file3 file1 file2 file3

TinyBuilder makes a distinction between path values and data values because the expansions
have different meanings. For example, if the multiple expansions example is
changed to make files and directory data values instead of path values, the script would
look like this:

job multiple values expansions example
 values
 files = file1
 files = file2
 files = file3
 directory = subdir1
 directory = subdir2
 commands break on error
 cat
 <directory>/<files>
 <directory>/<files>
 machine
 localhost

38

Command Generation

Now, a path separator is necessary or the expansions will be similar to subdir1file1.
However, while TinyBuilder knows the correct file separator to use, the script may not. It is pos-
sible for a single job to be sent to both a Windows and a Linux server. If path values are used, the
paths sent to the servers would be correct. If data values are used, the ‘/’ string will be used as a
path separator on Windows, which can cause problems on some command lines.

Furthermore, if the directory assignments are removed, the command line would become:

cat /file1 /file2 /file3 /file1 /file2 /file3

which is obviously incorrect; the command line would have been correct if path values were used.

A small adjustment to the previous example creates a different problem:

job multiple parent values expansions example
 values
 files = file1
 files = file2
 files = file3
 directory = ../subdir1
 directory = ../subdir2
 commands break on error
 cat
 <directory>/<files>
 <directory>/<files>
 machine
 localhost

Since directory is a data value, TinyBuilder knows nothing about its meaning. The current
directory for cat will be the root of the work area. When the command lines are expanded, they
will point to paths that are outside of the job’s work area. This is incorrect. However, if path val-
ues are used, TinyBuilder knows that the path value ../subdir1 is used and the parent of the
current directory must be the root of the work area.

In other words, when directory was set to subdir1, TinyBuilder knew that it was safe
to make the current directory the root of the work area, since no path value, input block or
output block referred to a parent directory. When directory was a path value with the
assignment ../subdir1, TinyBuilder knew that the job referred to the parent directory, and
so made it the root of the work area. However, when directory is a data value, TinyBuilder

39

Command Generation

makes no assumptions about the assignments to that name, and as a result, the work area will be
constructed incorrectly.

When the parser parses a path value, each path value becomes a sequence of path segments;
each path segment is separated by the path separator; a path segment never includes a path sep-
arator. The parser doesn’t know what kind of machine will be ultimately using the value within
the job, so it uses the client concept of what may be used as a path separator. For example, the ‘\’
character will function as a path separator when parsed by a Windows client, but the Linux client
will treat the character as part of the path segment.

When path values are concatenated, the sequences of path segments are concatenated. The
resulting sequence can then be normalized. For example:

job path concatenation example
 paths
 directory = bin
 archive = ../archive.tgz
 files = file1
 files = file2
 files = file3
 commands break on error
 tar
 -czvf
 <directory><archive>
 <files>
 machine
 localhost

The command line would be:

tar -czvf archive.tgz file1 file2 file3

When directory and archive are concatenated, the sequence of path segments are bin,
.. and archive.tgz. When the sequence is normalized, the path segment .. is dropped

along with the previous segment, bin; only archive.tgz remains.

The directory name expansion option allows a command line option to use the same
directory as another command line option, without using the file. For example:

job archive binaries example
 paths

40

Command Generation

 archive = ../bin/binaries.tgz
 executables = util1
 executables = util2
 executables = util3
 command break on error
 tar
 -C
 <<directory name> archive>
 -czvf
 <<enumerate>archive>
 <executables>
 machine
 localhost

would result in the command line:

tar -C ../bin -czvf ../bin/binaries.tgz util1 util2 util3

The directory name expansion option works by removing the last path segment from
the expansion. In the above example, the -C command line option will always be given the direc-
tory of the archive expansion. However, care must be taken to specify a directory within any
assignment when the directory name expansion option is used. For example:

job bad archive binaries example
 paths
 archive = binaries.tgz
 executables = util1
 executables = util2
 executables = util3
 command break on error
 tar
 -C
 <<directory name> archive>
 -czvf
 <<enumerate>archive>
 <executables>
 machine
 localhost

41

Command Generation

would result in an invalid command line:

tar -C -czvf ../bin/binaries.tgz util1 util2 util3

since an empty expansion is not an expansion. To fix this, set archive to ./binaries.
tgz. Alternatively, adding the required expansion option would cause the job to succeed
without executing any commands:

job tar not run example
 paths
 archive = binaries.tgz
 executables = util1
 executables = util2
 executables = util3
 command break on error
 tar
 -C
 <<required, directory name> archive>
 -czvf
 <<enumerate>archive>
 <executables>
 machine
 localhost

In the above example, the archive expansion is discarded due to the directory name
expansion option. Since the expansion is discarded, the required option triggers and the
command is discarded, even though an assignment was made to archive.

The file name expansion option is the opposite of the directory name expansion
option; while the directory name expansion option drops the last path segment, the file
name expansion option drops all but the last path segment. It is used to repeat a file name in
another directory. For example:

job compile source 1
 paths
 src = ../src/hello.c
 command break on error
 gcc
 -c
 -o
 ../obj/<<enumerate, file name> src>.o

42

Command Generation

 <<enumerate along> src>
 machines
 localhost

The job will execute:

gcc -c -o ../obj/hello.c.o ../src/hello.c

The assignment to source files creates a sequence of three path segments, .., src and
hello.c. Its first expansion leaves on the path segment hello.c. The second expansion
converts the entire path segment sequence into ../src/hello.c.

However, the object file’s name is hello.c.o; while still usable, the .c is redundant. To
remove it, the base name expansion option can be used. This expansion option acts upon
the last path segment and removes the last ‘.’ along with all subsequent text. This example is the
same as the previous, but makes use of the base name expansion option:

job compile source 2
 paths
 src = ../src/hello.c
 command break on error
 gcc
 -c
 -o
 ../obj/<<enumerate, file name, base name> src>.o
 <<enumerate along> src>
 machines
 localhost

This job will execute:

gcc -c -o ../obj/hello.o ../src/hello.c

When used together, the directory name, file name and base name expansion
options all work on the same path segment sequence; effectively, there is no order of operations.
When directory name and file name are used together, the sequence would always be
empty; the parser considers this situation to be invalid and will fail. When directory name
and base name are used together, the changes made by base name are lost. As a result, if
both options are used on the path x86.opt/file.c, the expansion will be x86.opt, never
x86. If there is no extension, the base name option has no effect. So x86.opt/file will

43

Command Generation

be expanded as x86.opt/file when the base name option is used. If there is no direc-
tory, the file name option has no effect. So file will remain file in its expansion.

44

The Build Log

When the client runs, it generates a build log named build_log.xml. The log is an xml doc-
ument that is designed to be human and machine readable with the following objectives:

Everything pertaining to a build is in a single file and may be easily found.

Everything is traceable. If anything failed, the root cause of the failure should be obvious.

All failures are recorded in the build log.

Everything that is observable when running a command line program is observable when the
command line is run through TinyBuilder.

The entire output of a command may be reconstructed from the log, byte for byte, regardless of
encoding.

The root element of the build log is BuildLog. The xml is utf-8 encoded; while output from
other encodings is accurately encoded, utf-8 text is the easiest to read. The structure of the log
is as follows:

root
 connection list
 connection
 hop
 error
 job list
 job
 command list
 command
 parameter list
 parameter
 stdout
 stderr
 return
 output list
 output
 output error

45

The Build Log

The connection list, job list, command list, parameter list and output list are conceptual; they do
not have corresponding elements in the xml. Rather, they are a list of zero or more elements of
the same type. The elements in the connection and job lists have no particular order, even rela-
tive to each other. The command list is in execution order within each job. The parameter list is in
the same sequence as the command line for each command. The directories containing the files
in the output list of the job appear before the files; the files have no particular order.

The Connection List

The connection list documents each connection made by the client. Each connection is specified
by a machine block in the script, which is reflected in the log by the machine element. The
name attribute of the machine element names the machine block. The block allows multi-
ple paths to be specified for load balancing, so the PathID attribute is used to identify the path
within the block. The first path has the value zero, the second path has the value one and so on. If
there is no machine block corresponding to the machine specified in the job block, the name
attribute will be the name of the machine in the job block and the PathID attribute will be
zero.

Since each path is a series of hops, each hop is documented using the hop element. The hop
element contains attributes to specify the url, ip address and service version information of each
hop. If the connection to the hop fails, the hop element is given an error element as a child.
The error element contains attributes to specify the type of the error, the time of the error
and possibly any operating system error code. The error element has the error message as its
contents.

There is no significance to where each machine element appears in the log.

The Job List

A job element is created in the build log for every job executed; jobs will not appear in the log
for the following reasons:

The job is make complete.

The job is not part of a scheduled project.

A failure occurs while connecting to the job’s machine.

The job building a file used as input to the missing job did not run or failed.

46

The Build Log

The job element may have the following attributes:

name: The name of the job from the script.

machine: Set to the value of the name attribute of the machine element documenting the
connection used by this job.

PathID: Set to the PathID of the machine element documenting the connection used by
this job.

status: Will be set to either succeeded, failed or error. If the value is succeeded,
the output of the job was transferred to the client and other jobs that depend on that output may
be scheduled. If the value is failed, no output from an output block was transferred and
no jobs depending on the failed job’s output may run. If the status is error, a TinyBuilder error
occurred while running the job and no jobs depending on the job’s output may run.

RunningTime: The number of seconds the job was running, which includes the input archive
transfer, executing all commands, and the output archive transfer. The RunningTime does
not include the DelayTime.

concurrency: Set to the concurrency of the job as specified by the script. If no concurrency
was specified in the script, this attribute is set to the default, medium.

DelayTime: The number of seconds the job was delayed because the server was too busy. This
attribute is not present if the job was not delayed. This time is not included in RunningTime.

DevelopmentEnvironment: If the job is using a development environment, this attribute
is set to the name in the script. Otherwise, the attribute is not set.

If the job specifies changes to its environment, the first children of the job element describe
the changes made. Each of the elements have a name and value attribute and are called
PrefixEnvironment, SuffixEnvironment and ReplaceEnvironment. The
elements appear in the log in the same order as the changes were applied.

The Command List

Each job has a list of commands it executed; each stored in a command element. Each command
has three sets of children, the parameter list, the output and the return value. The parameter list
describes each parameter passed to the command, in order. The output records the exact stdout
and stderr; it is assumed to be utf-8 text, but every byte can be retrieved from the log, regardless
of encoding or if it is even text. The return value records the process return value along with a

47

The Build Log

precise execution time. If the machine running the command supports signals, it will record a
signal value if the process was terminated due to a signal.

The command element has the following attributes:

executable: The executable used for the command. If a relative path is specified, the path is
relative to the work area directory. If no path is specified, the PATH environment value is used.

directory: The current directory used by the command. This will always be a path relative
to the work area directory.

ExecutableFromEnvironment: The executable may be specified using an environment
variable on the machine. When this is done, the environment variable name is documented in the
log as this attribute. Otherwise, this attribute is not set.

The first children of the command element are the parameter elements, which specify
each command line option in their value attribute. Each element is in the same order as the
command line parameters passed.

The command output is recorded in a sequence of out elements for stdout and a sequence
of err elements for stderr. While the order of out elements is chronological and the order of
err elements is chronological, the ordering of out elements relative to err elements is not
specified. The number of utf-8 code points is limited to help maintain human readability of the
log. The attributes of the out elements and err elements are:

offset: The number of bytes of output from the command before this element.

EOL: The Unicode name of the code point that terminated this element. This attribute is not
present if the element exceeded its code point limit.

The last child the command element is the return element or the signal element. The
purpose of these elements is to document how the command terminated. If the job failed with the
status error, the element may be missing. These elements may have the following attributes:

value: The return value of the process if the element is a return element, or the signal num-
ber if the element is a signal element. If the value attribute is non-zero, the command has
failed. Whether this causes the job to fail depends on the error handling specified by the com-
mand’s block.

elapsed: The number of seconds between the start of the command and its termination.

48

The Build Log

Output Tags

While TinyBuilder assumes all output is utf-8, output is never lost, regardless of its encoding, or
if it is even text. Since the build log still must always contain valid xml, TinyBuilder is constrained
by the requirements of the format.

First, a valid utf-8 encoded xml file must only contain valid utf-8 code points. Unicode
specifies bit patterns that must be adhered to and some bit patterns cannot be coaxed into utf-8.
TinyBuilder is designed to never lose data, so it will never convert an invalid code point to the
REPLACEMENT CHARACTER, drop the byte, or fail a command. Instead, it will embed an
InvalidByte tag into the text with a value attribute set to the hexadecimal value of the
byte.

Second, the xml standard contains restrictions on the code points the document may con-
tain, such as the NUL code point must be excluded. TinyBuilder converts these code points into
CodePoint tags with a value attribute set to the hexadecimal value of the code point. While
the InvalidByte tag is limited to 0x00 to 0xff, the value attribute of the CodePoint tag
is limited to the range of valid Unicode code points.

TinyBuilder is very efficient when gathering the output of commands running on the machine.
As a result, the stdout/stderr output becomes a wide pipe and a viable logging method when run-
ning within a job. When used this way, the output time becomes important. To track the output
time, each block of bytes received by the TinyBuilder machine is assigned an elapsed tag with
the following attributes:

seconds: The number of seconds elapsed since the beginning of the command when the fol-
lowing output was received.

offset: The number of bytes of output received before this tag.

EOF: The bytes following this tag are the final bytes emitted by the command before it closed
the output.

Effectively, the elapsed tag span the out and err elements containing the tags; if the text
of an out element has no elapsed tags, the entire text of the out element was written at the
time specified by the last elapsed tag occurring in a previous out element.

The offset attribute only counts the bytes received within the output stream. The off-
set attribute of an elapsed tag within an out element does not reflect any stderr bytes

49

The Build Log

received at that time.

While the TinyBuilder machine has substantial buffering to ensure high efficiency, the buffer-
ing is not infinite. If the TinyBuilder machine would run out of buffer space, it will prioritize get-
ting every byte over never blocking the command. The command will then block if it attempts
to write more output and the subsequent elapsed tags will be affected. When the machine
runs out of buffer space, it will insert a throttle tag into the output. The throttle tag
has a ThrottleOnElapsed attribute which records the seconds after the command started
when the machine began to throttle the output. The time throttling ended is recorded by the
next elapsed tag.

The Output List

The output files transferred from the machine is documented at the end of the job with a series of
output elements. These elements have no attributes; their contents are the path of the output
relative to the work area directory. If an output file could not be transferred, an OutputError
element will document the failure. In this case, the job fails and the client attempts to transfer
the files in the job’s failed output list. If a file from the failed output list cannot be transferred, the
error is ignored.

50

The Client

The client is the application used by each developer to perform their builds from their own
machines. It has no setup; all of its state is stored in the scripts it runs. It is designed to work
with the scripts consistently, regardless of the platform. While it only has a command line inter-
face, it has a ui to display its status when a terminal is available. The client produces a build log,
build_log.xml in the current directory; see The Build Log chapter of this guide for infor-
mation regarding the log’s contents.

This chapter describes the use of the TinyBuilder client, tbuild or tbuild.exe. This
includes an explanation of its command line interface, its user interface, and how it integrates
with ssh.

The Command Line Interface

The command line options are as follows:

Name Parameter Description
--job A job or project name Specifies the name of the job or project

 to run. If not specified, the job or project
 named main will run. If the name
 specifies a project, the jobs in the
 build block will run according to
 make scheduling. If the name specifies a
 job, the job will be run regardless of its
 scheduling status.
--rebuild None When building a project, the jobs in the

 build block will be run regardless of
 their scheduling state. When building a
 job, the parameter has no effect.
--automated None When specified and no job completes

 within a half hour, the client will
 consider all jobs hung and will abort all
 running jobs.

51

The Client

Name Parameter Description
--server-user-list SSH destination list Specifies a list of what would be

 destination parameters on the ssh(1)
 command line. If the ssh(1)
 command line is configured to not
 require a user to be specified, this option
 is not necessary. Each destination is in
 the form user@hostname,
 separated by either the ‘:’ or the ‘;’
 character. To take effect, the host name
 provided in the list must exactly match
 the host name of a url in a machine
 block.

Job Scheduling

By default, the project main is run with make scheduling. When a job is run with make schedul-
ing, the earliest modification date of the output of the job is compared with the latest modifica-
tion date of the input to the job. If the newest input file to a job is newer than the oldest output
to a job, then the job is not up to date and is run as part of the project. If the newest input is older
than the oldest output to the job, the job is up to date and is skipped. Jobs listed in the project’s
test block are always run when the project is run, regardless of if they are up to date or not.

When a job is specified by the --job command line parameter, the file modification times
are ignored and the job is always run. When a project is specified by the --job parameter, the
jobs listed in the test block are always run; jobs listed in the build block are run according to
make scheduling. When the --rebuild command line option is specified, the file modifica-
tion times are ignored and all jobs listed in the project are run.

If the output of a job within a project is input to a job in the same project, the job is delayed
until after the input file is generated by the other job. If the job producing input to another job
fails, the jobs depending on the input are not run.

If a project with a build block is included into a project’s test block, the jobs in the
included project’s build block are scheduled as if they are in a test block. If a project with
a test block is included in another project’s build block, the included project’s test block
remains scheduled regardless of file modification times.

52

The Client

SSH Integration

TinyBuilder has no built in security; it does no encryption and no authentication. It would be
easy to sniff traffic to derive all the source and binaries involved with the build. It would be easy
to intercept communications between the client and the service to record or alter the communi-
cation. By design, TinyBuilder permits files to be transferred to the service and can execute any-
thing the user running the service can execute; anything that can establish a connection to tcp
port 5017 would be able to utilize that service without authentication. To solve all these problems,
TinyBuilder provides integration with ssh port forwarding.

The machine block will specify when a service must be connected through ssh. If ssh is
properly configured, no other knowledge is needed by the client to complete the connection.
However, if a user is required on the ssh command line, one cannot be specified in the script. For
testing, the command line option --server-user-list may be used to specify the user
using the syntax user@hostname, which will be used as the destination on the ssh com-
mand line. The hostname specified in the command line option must exactly match the host
name specified in the machine block. Multiple destinations may be specified in the command
line option by separating them with either a ‘;’ or a ‘:’. Once the command line is working, the
same destination list can be assigned to the environment variable TB_SSH_SERVER_LIST.
If a list is specified on the command line, the environment variable will not be used.

If ssh-agent is used, no password will be necessary. If ssh-agent is not used for the
destination, the password will need to be entered during the build. If the --automated
command line parameter is specified or if the client is used without a terminal, any connection
requiring a password will fail. If the client is used interactively, the password may be entered. On
Windows, each ssh command launched by the client will have its own command prompt where
the password may be entered. The title of the command prompt will specify the server. On the
other platforms, a window will pop up in the ui to accept the password. The client can only
connect to one server at a time; it will wait for up to two minutes for the password to be entered
before the connection fails. Since all other connections will wait for the password, entering pass-
words can make the build take longer.

The Interactive User Interface

If the stdout, stderr, or stdin of the client are redirected or otherwise not connected to the ter-
minal, then client will execute in batch mode. When running in batch mode, The client will print
messages as each job completes, but stdin will be ignored. Since stdin is ignored, ssh port for-
warding will fail if a password is required.

When tbuild is attached to a terminal, it will run in interactive mode. While in interactive
mode, a simple ui will be displayed as the jobs run. The ui displays the commands as they execute

53

The Client

along with the time they have been running. If backspace is pressed, the ui will exit and any jobs
in progress will abort. After the ui exits, the same messages printed in batch mode will be printed
to the terminal.

The left most column in the ui is the url of the connection. The next column is the job name.
After the job name is the seconds between the current time and when the job started; this time
will include time the job was delayed due to concurrency restrictions. The third column is the
command that is being run, without its arguments. If an input or output transfer is in progress,
the number of K transferred will be displayed.

The last column, the command time, is the time since the command or transfer was started.
The client may not check if a command has completed for some time, so the command may have
completed on the machine while the command time is still increasing on the client.

Batch Use

If stdin, stdout or stderr are redirected, the interactive user interface will be disabled. Instead, the
client will only print a line when a job completes; stderr is not used. It is impossible for a pass-
word to be entered without a terminal, so ssh integration can only work with ssh-agent. In a
similar way, if the --automated command line parameter is specified, the terminal, if any, will
be ignored. In addition, when the --automated command line parameter is passed, the client
will automatically abort if a job does not complete within a half hour. This behavior is intended
to prevent a build from running forever when something goes wrong during an automated build.

Error Handling

When an error occurs, the error will be reported to the build_log.xml file. See The Build
Log chapter of the user guide for additional details.

If the TinyBuilder client encounters an internal error that indicates it has a bug, tbuild will
panic and create a panic.bin file in the current directory. If the tbuild process is hung, press-
ing ctrl-c or sending a SIGINT will cause tbuild to panic and produce a panic.bin
file. The panic.bin file can be sent to support@tinymanagement.com for diagnosis.
The panic.bin file will contain the same contents of the build_log.xml file, such as ip
addresses and file names. It will not contain file contents.

54

The Agent

In Windows and macOS, there is a distinction between foreground processes and background
processes; foreground processes may interact with the gui, while background processes cannot.
In Windows, any executable that makes use of user32.dll can be expected to hang if it is run
as a background process. In macOS, a process that attempts to interact with the desktop will
encounter strange errors. The TinyBuilder service always runs as a background process and all
commands it spawns also run as a background process.

To support automation of foreground processes, TinyBuilder provides the agent. When the
Windows or macOS TinyBuilder service is installed, the installation also installs an agent. The
agent runs whenever the installing user logs in; when the user logs out, the agent is terminated.
Since it is running as a foreground process as the installing user, the agent will launch foreground
processes. Since Linux does not normally provide a strong distinction between foreground and
background processes, there is no Linux agent.

When the agent starts, it allocates an ephemeral port for its use and stores the port number in
a file. When the service is asked to connect to the agent, the service reads the file and connects
to the specified port over the loopback interface. The service then acts as a tunnel to the agent.

To specify a connection to an agent, a path block must be used within a machine block.
The first member of the path must be a url to the service on the server running the agent; both
the tb: and tbs: schemes are valid. The second member of the path must be the url tbi://
localhost. Doing so instructs the client to first connect to the service normally, then estab-
lish a tunnel to the second url. Since the url explicitly specifies the agent, the tunnel connects
to the agent. For example:

machine interactive builder
 path
 tbs://build-server
 tbi://localhost

A connection to the agent is treated by the client as a separate connection from the connection
to the service. So if one or more jobs are making use of the service and one or more jobs are mak-
ing use of the agent in the same project, two connections will be established. If the connection
to the service is using ssh and ssh requires a password, the password will need to be entered

55

The Agent

twice.

Since the agent terminates when the installing user logs out, the user must remain logged in
for TinyBuilder to make use of it. While an automated reboot will restart the service, it will not
restart the agent. The user will need to log in after any reboot for the agent to stay running. Any
macOS key stores used by the agent will need to be manually unlocked by the user after logging
in; the agent does not have the user’s password. Password changes are irrelevant to the agent
itself, but may be important if the password change disconnects the logged in user from any
remote resources used by processes launched by the agent.

56

Maintenance Story

Maintenance Story

This chapter describes a fictional situation to demonstrate a possible evolution of a build system.
It is intended to show various TinyBuilder script styles with functional examples.

Bob was asked to port a make script to TinyBuilder. To minimize the disruption he did this
a program at a time by replicating the command lines generated by make. He prepared a dedi-
cated server to build the product, called builder. After the TinyBuilder script was completed
and working, Bob was required for another project and Alice was asked to improve the script to
be easier to maintain.

Alice inherited a single script to build two programs and single library. The script looked like
this:

job build debug utilities library
 input
 utils/file.utils.c
 include/file.utils.h
 utils/screen.utils.c
 include/screen.utils.h
 commands break on error
 mkdir
 -p
 obj
 mkdir
 -p
 libs/debug
 gcc
 -c
 -O0
 -m64
 -g
 -Iinclude
 -o
 obj/file.utils.o
 utils/file.utils.c
 gcc
 -c

Naming conventions
are very important.
A build script can be
expected to contain a
large number of blocks
and it is important
to use key terms in
a specified order to
ensure a common
understanding of the
meaning of each block.

57

Maintenance Story

 -O0
 -m64
 -g
 -Iinclude
 -o
 obj/screen.utils.o
 utils/screen.utils.c
 ar
 q
 libs/debug/libutils.a
 obj/file.utils.o
 obj/screen.utils.o
 output
 libs/debug/libutils.a
 machine
 builder

job build production utilities library
 input
 utils/file.utils.c
 include/file.utils.h
 utils/screen.utils.c
 include/screen.utils.h
 commands break on error
 mkdir
 -p
 obj
 mkdir
 -p
 libs/production
 gcc
 -c
 -O3
 -m64
 -Iinclude
 -o
 obj/file.utils.o
 utils/file.utils.c
 gcc
 -c
 -O3
 -m64

Block names can and
should be very long,

descriptive, and use
spaces for readability.

Typically, build scripts
are read much more
frequently than they

are written, so it is use-
ful to put in the typing

up front.

58

Maintenance Story

 -Iinclude
 -o
 obj/screen.utils.o
 utils/screen.utils.c
 ar
 q
 libs/production/libutils.a
 obj/file.utils.o
 obj/screen.utils.o
 output
 libs/production/libutils.a
 machine
 builder

job build debug program 1
 input
 include/file.utils.h
 include/screen.utils.h
 program1/src/main.c
 program1/src/module1.c
 program1/include/module1.h
 program1/src/module2.c
 program1/include/module2.h
 libs/debug/libutils.a
 commands break on error
 mkdir
 -p
 obj
 mkdir
 -p
 bin/debug
 gcc
 -c
 -O0
 -m64
 -g
 -Iinclude
 -Iprogram1/include
 -o
 obj/main.o
 program1/src/main.c
 gcc

There is no limitation
to the kinds of com-
mands that can be run.
While impossible as
input or output, abso-
lute paths are permis-
sible within commands.
The work area is not a
sandbox; it is possible
to affect the server
and other jobs with a
carefully constructed
command. Protocol
port spaces are shared
between jobs.

59

Maintenance Story

 -c
 -O0
 -m64
 -g
 -Iinclude
 -Iprogram1/include
 -o
 obj/module1.o
 program1/src/module1.c
 gcc
 -c
 -O0
 -m64
 -g
 -Iinclude
 -Iprogram1/include
 -o
 obj/module2.o
 program1/src/module2.c
 gcc
 -g
 -o
 bin/debug/program1
 obj/main.o
 obj/module1.o
 obj/module2.o
 -Llibs/debug
 -lutils
 output
 bin/debug/program1
 machine
 builder

job build production program 1
 input
 include/file.utils.h
 include/screen.utils.h
 program1/src/main.c
 program1/src/module1.c
 program1/include/module1.h
 program1/src/module2.c
 program1/include/module2.h

60

Maintenance Story

 libs/production/libutils.a
 commands break on error
 mkdir
 -p
 obj
 mkdir
 -p
 bin/production
 gcc
 -c
 -O3
 -m64
 -Iinclude
 -Iprogram1/include
 -o
 obj/main.o
 program1/src/main.c
 gcc
 -c
 -O3
 -m64
 -Iinclude
 -Iprogram1/include
 -o
 obj/module1.o
 program1/src/module1.c
 gcc
 -c
 -O3
 -m64
 -Iinclude
 -Iprogram1/include
 -o
 obj/module2.o
 program1/src/module2.c
 gcc
 -o
 bin/production/program1
 obj/main.o
 obj/module1.o
 obj/module2.o
 -Llibs/production

If a directory is not
specified as part of
the input, it will not
exist in the work area
at the start of the job.
Any other directories
need to be created by a
script or command as
done here.

61

Maintenance Story

 -lutils
 output
 bin/production/program1
 machine
 builder

job build debug program 2
 input
 include/file.utils.h
 include/screen.utils.h
 program2/src/main.c
 program2/src/module3.c
 program2/include/module3.h
 program2/src/module4.c
 program2/include/module4.h
 libs/debug/libutils.a
 commands break on error
 mkdir
 -p
 obj
 mkdir
 -p
 bin/debug
 gcc
 -c
 -O0
 -m64
 -g
 -Iinclude
 -Iprogram2/include
 -o
 obj/main.o
 program2/src/main.c
 gcc
 -c
 -O0
 -m64
 -g
 -Iinclude
 -Iprogram2/include
 -o
 obj/module3.o

It is very easy with this
script to compile dif-

ferent source files dif-
ferently. It is possible

to accomplish the same
thing more elegantly

using multiple file lists
for source files.

62

Maintenance Story

 program2/src/module3.c
 gcc
 -c
 -O0
 -m64
 -g
 -Iinclude
 -Iprogram2/include
 -o
 obj/module4.o
 program2/src/module4.c
 gcc
 -g
 -o
 bin/debug/program2
 obj/main.o
 obj/module3.o
 obj/module4.o
 -Llibs/debug
 -lutils
 output
 bin/debug/program2
 machine
 builder

job build production program 2
 input
 include/file.utils.h
 include/screen.utils.h
 program2/src/main.c
 program2/src/module3.c
 program2/include/module3.h
 program2/src/module4.c
 program2/include/module4.h
 libs/production/libutils.a
 commands break on error
 mkdir
 -p
 obj
 mkdir
 -p
 bin/production

The script lacks
comments, which is
obviously not best
practice. However,
comments are the least
interesting part of
TinyBuilder’s script-
ing language, so they
are not shown here.

63

Maintenance Story

 gcc
 -c
 -O3
 -m64
 -Iinclude
 -Iprogram2/include
 -o
 obj/main.o
 program2/src/main.c
 gcc
 -c
 -O3
 -m64
 -Iinclude
 -Iprogram2/include
 -o
 obj/module3.o
 program2/src/module3.c
 gcc
 -c
 -O3
 -m64
 -Iinclude
 -Iprogram2/include
 -o
 obj/module4.o
 program2/src/module4.c
 gcc
 -o
 bin/production/program2
 obj/main.o
 obj/module3.o
 obj/module4.o
 -Llibs/production
 -lutils
 output
 bin/production/program2
 machine
 builder

project main
 builds

64

Maintenance Story

 build debug utilities library
 build production utilities library
 build debug program 1
 build production program 1
 build debug program 2
 build production program 2

65

The first thing Alice noticed about the script is the number of lines describing commands; lines
that could be consolidated by adding steps for compiling the programs and libraries. There were
four basic operations in the script, creating the output directories, compiling the C files, building
the archive and linking the programs. Each could be consolidated as steps. The updated script
was as follows:

step create output directory
 parameters
 directory
 commands break on error
 mkdir
 -p
 <<enumerate>directory>

step compile C files
 parameters
 compiler options
 source files
 output directory
 commands break on error
 gcc
 -c
 <compiler options>
 -o
 <output directory><<enumerate, base name, file
name> source files>.o
 <<enumerate along> source files>

step archive library
 parameters
 source files
 output
 commands break on error
 ar
 q
 <output>
 obj/<<base name, file name>source files>.o

step link program
 parameters
 link options
 source files

The enumerate expan-
sion option causes

mkdir to be run once
per assignment. If

omitted, the directories
would all be created by

a single run.

The -c and -o com-
mand line options

are hard coded here
because the command

line always needs them.
They could be specified

by assignments.

The line continued
here since there was
insufficient space on

the page. This cannot
be done in an actual

script

The link and archive
steps are their own
steps because they

are used differently
and require different

parameters. Steps
can have multiple

commands.

66

Maintenance Story

 executable
 library paths
 libraries
 commands break on error
 gcc
 <link options>
 -o
 <executable>
 obj/<<base name, file name>source files>.o
 -L<library paths>
 -l<libraries>

job build debug utilities library
 input
 utils/file.utils.c
 include/file.utils.h
 utils/screen.utils.c
 include/screen.utils.h
 paths
 output directory = obj
 output directory = libs/debug
 values
 compiler options = -O0
 compiler options = -m64
 compiler options = -g
 compiler options = -Iinclude
 paths
 source files = utils/file.utils.c
 source files = utils/screen.utils.c
 intermediate directory = obj
 archive name = libs/debug/libutils.a
 include step create output directory
 output directory
 include step compile C files
 compiler options
 source files
 intermediate directory
 include step archive library
 source files
 archive name
 output
 libs/debug/libutils.a

67

Maintenance Story

 machine
 builder

job build production utilities library
 input
 utils/file.utils.c
 include/file.utils.h
 utils/screen.utils.c
 include/screen.utils.h
 paths
 output directory = obj
 output directory = libs/production
 values
 compiler options = -O3
 compiler options = -m64
 compiler options = -Iinclude
 paths
 source files = utils/file.utils.c
 source files = utils/screen.utils.c
 intermediate directory = obj
 archive name = libs/production/libutils.a
 include step create output directory
 output directory
 include step compile C files
 compiler options
 source files
 intermediate directory
 include step archive library
 source files
 archive name
 output
 libs/production/libutils.a
 machine
 builder

job build debug program 1
 input
 include/file.utils.h
 include/screen.utils.h
 program1/src/main.c
 program1/src/module1.c
 program1/include/module1.h

Now, the part of the
job specifying com-
mands has become

quite repetitive.
Repetitive job struc-

tures are useful; a new
job is easier to copy/

paste; especially when
naming conventions
are done well; a new
job should be exactly
like the old job; only
the block names are

changed.

68

Maintenance Story

 program1/src/module2.c
 program1/include/module2.h
 libs/debug/libutils.a
 paths
 output directory = obj
 output directory = bin/debug
 values
 compiler options = -O0
 compiler options = -m64
 compiler options = -g
 compiler options = -Iinclude
 compiler options = -Iprogram1/include
 paths
 source files = program1/src/main.c
 source files = program1/src/module1.c
 source files = program1/src/module2.c
 intermediate directory = obj
 executable = bin/debug/program1
 library paths = libs/debug
 values
 link options = -g
 libraries = utils
 include step create output directory
 output directory
 include step compile C files
 compiler options
 source files
 intermediate directory
 include step link program
 link options
 source files
 executable
 library paths
 libraries
 output
 bin/debug/program1
 machine
 builder

job build production program 1
 input
 include/file.utils.h

69

Maintenance Story

 include/screen.utils.h
 program1/src/main.c
 program1/src/module1.c
 program1/include/module1.h
 program1/src/module2.c
 program1/include/module2.h
 libs/production/libutils.a
 paths
 output directory = obj
 output directory = bin/production
 values
 compiler options = -O3
 compiler options = -m64
 compiler options = -Iinclude
 compiler options = -Iprogram1/include
 paths
 source files = program1/src/main.c
 source files = program1/src/module1.c
 source files = program1/src/module2.c
 intermediate directory = obj
 executable = bin/production/program1
 library paths = libs/production
 values
 libraries = utils
 include step create output directory
 output directory
 include step compile C files
 compiler options
 source files
 intermediate directory
 include step link program
 link options
 source files
 executable
 library paths
 libraries
 output
 bin/production/program1
 machine
 builder

job build debug program 2

70

Maintenance Story

 input
 include/file.utils.h
 include/screen.utils.h
 program2/src/main.c
 program2/src/module3.c
 program2/include/module3.h
 program2/src/module4.c
 program2/include/module4.h
 libs/debug/libutils.a
 paths
 output directory = obj
 output directory = bin/debug
 values
 compiler options = -O0
 compiler options = -m64
 compiler options = -g
 compiler options = -Iinclude
 compiler options = -Iprogram2/include
 paths
 source files = program2/src/main.c
 source files = program2/src/module3.c
 source files = program2/src/module4.c
 intermediate directory = obj
 executable = bin/debug/program2
 library paths = libs/debug
 values
 link options = -g
 libraries = utils
 include step create output directory
 output directory
 include step compile C files
 compiler options
 source files
 intermediate directory
 include step link program
 link options
 source files
 executable
 library paths
 libraries
 output
 bin/debug/program2

71

 machine
 builder

job build production program 2
 input
 include/file.utils.h
 include/screen.utils.h
 program2/src/main.c
 program2/src/module3.c
 program2/include/module3.h
 program2/src/module4.c
 program2/include/module4.h
 libs/production/libutils.a
 paths
 output directory = obj
 output directory = bin/production
 values
 compiler options = -O3
 compiler options = -m64
 compiler options = -Iinclude
 compiler options = -Iprogram2/include
 paths
 source files = program2/src/main.c
 source files = program2/src/module3.c
 source files = program2/src/module4.c
 intermediate directory = obj
 executable = bin/production/program2
 library paths = libs/production
 values
 libraries = utils
 include step create output directory
 output directory
 include step compile C files
 compiler options
 source files
 intermediate directory
 include step link program
 link options
 source files
 executable
 library paths
 libraries

Thanks to the library
built by another job,
this job will always
run after build
production
utilities

library and only if
the the job succeeds. If
run by itself, build

production
program 2 will

always run as long as
the library file exists.

72

Maintenance Story

 output
 bin/production/program2
 machine
 builder

project main
 builds
 build debug utilities library
 build production utilities library
 build debug program 1
 build production program 1
 build debug program 2
 build production program 2

73

Maintenance Story

While progress was made, more needed to be done. Every library build and every program build
had exactly the same sequence of steps. Therefore, it was possible to consolidate the sequences
into two steps, one for a library and one for a program. The resulting script looked like this:

step create output directory
 parameters
 directory
 commands break on error
 mkdir
 -p
 <<enumerate>directory>

step compile C files
 parameters
 compiler options
 source files
 commands break on error
 gcc
 -c
 <compiler options>
 -o
 obj/<<enumerate, base name, file name> source
files>.o
 <<enumerate along> source files>

step archive library
 parameters
 source files
 output
 commands break on error
 ar
 q
 <output>
 obj/<<base name, file name>source files>.o

step link program
 parameters
 link options
 source files
 executable
 library paths
 libraries

Data assignments
cannot change after

the script is parsed, so
passing parameters by
reference or value has

no meaning. Instead,
parameters are just

aliases into data
assignments used by
the job including the

step; even when a step
includes another step;
the aliasing is as deep

as necessary.

74

Maintenance Story

 commands break on error
 gcc
 <link options>
 -o
 <executable>
 obj/<<base name, file name>source files>.o
 -L<library paths>
 -l<libraries>

step build library
 parameters
 output directory
 compiler options
 source files
 archive name
 include step create output directory
 output directory
 include step compile C files
 compiler options
 source files
 include step archive library
 source files
 archive name

step build program
 parameters
 output directory
 compiler options
 source files
 link options
 executable
 library paths
 libraries
 include step create output directory
 output directory
 include step compile C files
 compiler options
 source files
 include step link program
 link options
 source files
 executable

When consolidating
steps like this, the
parameter list of the
step is the union of the
parameter lists of the
included steps.

75

Maintenance Story

 library paths
 libraries

job build debug utilities library
 input
 utils/file.utils.c
 include/file.utils.h
 utils/screen.utils.c
 include/screen.utils.h
 paths
 output directory = obj
 output directory = libs/debug
 values
 compiler options = -O0
 compiler options = -m64
 compiler options = -g
 compiler options = -Iinclude
 paths
 source files = utils/file.utils.c
 source files = utils/screen.utils.c
 archive name = libs/debug/libutils.a
 include step build library
 output directory
 compiler options
 source files
 archive name
 output
 libs/debug/libutils.a
 machine
 builder

job build production utilities library
 input
 utils/file.utils.c
 include/file.utils.h
 utils/screen.utils.c
 include/screen.utils.h
 paths
 output directory = obj
 output directory = libs/production
 values
 compiler options = -O3

76

Maintenance Story

 compiler options = -m64
 compiler options = -Iinclude
 paths
 source files = utils/file.utils.c
 source files = utils/screen.utils.c
 archive name = libs/production/libutils.a
 include step build library
 output directory
 compiler options
 source files
 archive name
 output
 libs/production/libutils.a
 machine
 builder

job build debug program 1
 input
 include/file.utils.h
 include/screen.utils.h
 program1/src/main.c
 program1/src/module1.c
 program1/include/module1.h
 program1/src/module2.c
 program1/include/module2.h
 libs/debug/libutils.a
 paths
 output directory = obj
 output directory = bin/debug
 values
 compiler options = -O0
 compiler options = -m64
 compiler options = -g
 compiler options = -Iinclude
 compiler options = -Iprogram1/include
 paths
 source files = program1/src/main.c
 source files = program1/src/module1.c
 source files = program1/src/module2.c
 executable = bin/debug/program1
 library paths = libs/debug
 values

77

Maintenance Story

 link options = -g
 libraries = utils
 include step build program
 output directory
 compiler options
 source files
 link options
 executable
 library paths
 libraries
 output
 bin/debug/program1
 machine
 builder

job build production program 1
 input
 include/file.utils.h
 include/screen.utils.h
 program1/src/main.c
 program1/src/module1.c
 program1/include/module1.h
 program1/src/module2.c
 program1/include/module2.h
 libs/production/libutils.a
 paths
 output directory = obj
 output directory = bin/production
 values
 compiler options = -O3
 compiler options = -m64
 compiler options = -Iinclude
 compiler options = -Iprogram1/include
 paths
 source files = program1/src/main.c
 source files = program1/src/module1.c
 source files = program1/src/module2.c
 executable = bin/production/program1
 library paths = libs/production
 values
 libraries = utils
 include step build program

78

Maintenance Story

 output directory
 compiler options
 source files
 link options
 executable
 library paths
 libraries
 output
 bin/production/program1
 machine
 builder

job build debug program 2
 input
 include/file.utils.h
 include/screen.utils.h
 program2/src/main.c
 program2/src/module3.c
 program2/include/module3.h
 program2/src/module4.c
 program2/include/module4.h
 libs/debug/libutils.a
 paths
 output directory = obj
 output directory = bin/debug
 values
 compiler options = -O0
 compiler options = -m64
 compiler options = -g
 compiler options = -Iinclude
 compiler options = -Iprogram2/include
 paths
 source files = program2/src/main.c
 source files = program2/src/module3.c
 source files = program2/src/module4.c
 executable = bin/debug/program2
 library paths = libs/debug
 values
 link options = -g
 libraries = utils
 include step build program
 output directory

79

Maintenance Story

 compiler options
 source files
 link options
 executable
 library paths
 libraries
 output
 bin/debug/program2
 machine
 builder

job build production program 2
 input
 include/file.utils.h
 include/screen.utils.h
 program2/src/main.c
 program2/src/module3.c
 program2/include/module3.h
 program2/src/module4.c
 program2/include/module4.h
 libs/production/libutils.a
 paths
 output directory = obj
 output directory = bin/production
 values
 compiler options = -O3
 compiler options = -m64
 compiler options = -Iinclude
 compiler options = -Iprogram2/include
 paths
 source files = program2/src/main.c
 source files = program2/src/module3.c
 source files = program2/src/module4.c
 executable = bin/production/program2
 library paths = libs/production
 values
 libraries = utils
 include step build program
 output directory
 compiler options
 source files
 link options

80

Maintenance Story

 executable
 library paths
 libraries
 output
 bin/production/program2
 machine
 builder

project main
 builds
 build debug utilities library
 build production utilities library
 build debug program 1
 build production program 1
 build debug program 2
 build production program 2

Alice confirmed that this script produced exactly the same command line sequence as Bob’s
script.

81

Maintenance Story

Now that the command line sequences were consolidated, Alice noticed that a lot of lines of the
script were consumed with command line options. She decided that the next step to take was to
consolidate those options into data blocks that could be shared among the jobs. She confirmed
the new script resulted in the same command line sequence as Bob’s script:

step create output directory
 parameters
 directory
 commands break on error
 mkdir
 -p
 <<enumerate>directory>

step compile C files
 parameters
 compiler options
 source files
 commands break on error
 gcc
 -c
 <compiler options>
 -o
 obj/<<enumerate, base name, file name> source
files>.o
 <<enumerate along> source files>

step archive library
 parameters
 source files
 output
 commands break on error
 ar
 q
 <output>
 obj/<<base name, file name>source files>.o

step link program
 parameters
 link options
 source files
 executable
 library paths

When compiling, the
command is run once

per source file due to
the enumerate option.

The same source file is
used in two arguments,

which necessitates
the enumerate along

option. The base name
and file name expan-

sion options allow the
object files to be placed

in a different direc-
tory from the source
file and removes the

original source file
extension.

82

Maintenance Story

 libraries
 commands break on error
 gcc
 <link options>
 -o
 <executable>
 obj/<<base name, file name>source files>.o
 -L<library paths>
 -l<libraries>

step build library
 parameters
 output directory
 compiler options
 source files
 archive name
 include step create output directory
 output directory
 include step compile C files
 compiler options
 source files
 include step archive library
 source files
 archive name

step build program
 parameters
 output directory
 compiler options
 source files
 link options
 executable
 library paths
 libraries
 include step create output directory
 output directory
 include step compile C files
 compiler options
 source files
 include step link program
 link options
 source files

The base name and
file name expansion
options work together
to place a file in a
different directory
with a new extension
cleanly. The enumer-
ate expansion option is
not desired here.

83

Maintenance Story

 executable
 library paths
 libraries

data debug compile options
 values
 compiler options = -O0
 compiler options = -m64
 compiler options = -g

data production compile options
 values
 compiler options = -O3
 compiler options = -m64

data utils library compile options
 values
 compiler options = -Iinclude

data debug link options
 values
 link options = -g

data production link options

job build debug utilities library
 input
 utils/file.utils.c
 include/file.utils.h
 utils/screen.utils.c
 include/screen.utils.h
 paths
 output directory = obj
 output directory = libs/debug
 include data
 debug compile options
 utils library compile options
 paths
 source files = utils/file.utils.c
 source files = utils/screen.utils.c
 archive name = libs/debug/libutils.a
 include step build library

An empty block is
perfectly valid; it is
just a block with no
assignments. With

this block, production
jobs can include it just
like debug jobs include
theirs. If assignments

are added, they will
affect the production

jobs without needing to
change them.

84

Maintenance Story

 output directory
 compiler options
 source files
 archive name
 output
 libs/debug/libutils.a
 machine
 builder

job build production utilities library
 input
 utils/file.utils.c
 include/file.utils.h
 utils/screen.utils.c
 include/screen.utils.h
 paths
 output directory = obj
 output directory = libs/production
 include data
 production compile options
 utils library compile options
 paths
 source files = utils/file.utils.c
 source files = utils/screen.utils.c
 archive name = libs/production/libutils.a
 include step build library
 output directory
 compiler options
 source files
 archive name
 output
 libs/production/libutils.a
 machine
 builder

job build debug program 1
 input
 include/file.utils.h
 include/screen.utils.h
 program1/src/main.c
 program1/src/module1.c
 program1/include/module1.h

85

Maintenance Story

 program1/src/module2.c
 program1/include/module2.h
 libs/debug/libutils.a
 paths
 output directory = obj
 output directory = bin/debug
 include data
 debug compile options
 utils library compile options
 debug link options
 values
 compiler options = -Iprogram1/include
 paths
 source files = program1/src/main.c
 source files = program1/src/module1.c
 source files = program1/src/module2.c
 executable = bin/debug/program1
 library paths = libs/debug
 values
 libraries = utils
 include step build program
 output directory
 compiler options
 source files
 link options
 executable
 library paths
 libraries
 output
 bin/debug/program1
 machine
 builder

job build production program 1
 input
 include/file.utils.h
 include/screen.utils.h
 program1/src/main.c
 program1/src/module1.c
 program1/include/module1.h
 program1/src/module2.c
 program1/include/module2.h

86

Maintenance Story

 libs/production/libutils.a
 paths
 output directory = obj
 output directory = bin/production
 include data
 production compile options
 utils library compile options
 production link options
 values
 compiler options = -Iprogram1/include
 paths
 source files = program1/src/main.c
 source files = program1/src/module1.c
 source files = program1/src/module2.c
 executable = bin/production/program1
 library paths = libs/production
 values
 libraries = utils
 include step build program
 output directory
 compiler options
 source files
 link options
 executable
 library paths
 libraries
 output
 bin/production/program1
 machine
 builder

job build debug program 2
 input
 include/file.utils.h
 include/screen.utils.h
 program2/src/main.c
 program2/src/module3.c
 program2/include/module3.h
 program2/src/module4.c
 program2/include/module4.h
 libs/debug/libutils.a
 paths

87

Maintenance Story

 output directory = obj
 output directory = bin/debug
 include data
 debug compile options
 utils library compile options
 debug link options
 values
 compiler options = -Iprogram2/include
 paths
 source files = program2/src/main.c
 source files = program2/src/module3.c
 source files = program2/src/module4.c
 executable = bin/debug/program2
 library paths = libs/debug
 values
 libraries = utils
 include step build program
 output directory
 compiler options
 source files
 link options
 executable
 library paths
 libraries
 output
 bin/debug/program2
 machine
 builder

job build production program 2
 input
 include/file.utils.h
 include/screen.utils.h
 program2/src/main.c
 program2/src/module3.c
 program2/include/module3.h
 program2/src/module4.c
 program2/include/module4.h
 libs/production/libutils.a
 paths
 output directory = obj
 output directory = bin/production

88

Maintenance Story

 include data
 production compile options
 utils library compile options
 production link options
 values
 compiler options = -Iprogram2/include
 paths
 source files = program2/src/main.c
 source files = program2/src/module3.c
 source files = program2/src/module4.c
 executable = bin/production/program2
 library paths = libs/production
 values
 libraries = utils
 include step build program
 output directory
 compiler options
 source files
 link options
 executable
 library paths
 libraries
 output
 bin/production/program2
 machine
 builder

project main
 builds
 build debug utilities library
 build production utilities library
 build debug program 1
 build production program 1
 build debug program 2
 build production program 2

89

Maintenance Story

Now that the command line options settings were consolidated, Alice decided to simplify includ-
ing the utils library headers and the job input blocks by adding file lists. She confirmed that
this script produced the same command line sequence as Bob’s script:

step create output directory
 parameters
 directory
 commands break on error
 mkdir
 -p
 <<enumerate>directory>

step compile C files
 parameters
 compiler options
 source files
 commands break on error
 gcc
 -c
 <compiler options>
 -o
 obj/<<enumerate, base name, file name> source
files>.o
 <<enumerate along> source files>

step archive library
 parameters
 source files
 output
 commands break on error
 ar
 q
 <output>
 obj/<<base name, file name>source files>.o

step link program
 parameters
 link options
 source files
 executable
 library paths
 libraries

90

Maintenance Story

 commands break on error
 gcc
 <link options>
 -o
 <executable>
 obj/<<base name, file name>source files>.o
 -L<library paths>
 -l<libraries>

step build library
 parameters
 output directory
 compiler options
 source files
 archive name
 include step create output directory
 output directory
 include step compile C files
 compiler options
 source files
 include step archive library
 source files
 archive name

step build program
 parameters
 output directory
 compiler options
 source files
 link options
 executable
 library paths
 libraries
 include step create output directory
 output directory
 include step compile C files
 compiler options
 source files
 include step link program
 link options
 source files
 executable

91

Maintenance Story

 library paths
 libraries

data debug compile options
 values
 compiler options = -O0
 compiler options = -m64
 compiler options = -g

data production compile options
 values
 compiler options = -O3
 compiler options = -m64

data utils library compile options
 values
 compiler options = -Iinclude

data debug link options
 values
 link options = -g

data production link options

file list utils library headers
 files
 include/file.utils.h
 include/screen.utils.h

file list utils library source
 files
 utils/file.utils.c
 utils/screen.utils.c

job build debug utilities library
 include input
 utils library source
 utils library headers
 paths
 output directory = obj
 output directory = libs/debug
 include data

The file lists and the
data blocks conform to

naming conventions
as well as the jobs to

make the meaning of
the block clear and to
help ease job creation

when copy/pasting.

Note that the paths
in the file lists are the

same as the paths that
were repeated in each

job. The path is rela-
tive to the directory of

the script in both in
the job and in the file

list.

92

Maintenance Story

 debug compile options
 utils library compile options
 include data with name source files
 utils library source
 paths
 archive name = libs/debug/libutils.a
 include step build library
 output directory
 compiler options
 source files
 archive name
 output
 libs/debug/libutils.a
 machine
 builder

job build production utilities library
 include input
 utils library source
 utils library headers
 paths
 output directory = obj
 output directory = libs/production
 include data
 production compile options
 utils library compile options
 include data with name source files
 utils library source
 paths
 archive name = libs/production/libutils.a
 include step build library
 output directory
 compiler options
 source files
 archive name
 output
 libs/production/libutils.a
 machine
 builder

file list program 1 headers
 files

93

Maintenance Story

 program1/include/module1.h
 program1/include/module2.h

file list program 1 source
 files
 program1/src/main.c
 program1/src/module1.c
 program1/src/module2.c

job build debug program 1
 include input
 utils library headers
 program 1 headers
 program 1 source
 input
 libs/debug/libutils.a
 paths
 output directory = obj
 output directory = bin/debug
 include data
 debug compile options
 utils library compile options
 debug link options
 values
 compiler options = -Iprogram1/include
 include data with name source files
 program 1 source
 paths
 executable = bin/debug/program1
 library paths = libs/debug
 values
 libraries = utils
 include step build program
 output directory
 compiler options
 source files
 link options
 executable
 library paths
 libraries
 output
 bin/debug/program1

The file lists are not
together in this script,
and that is acceptable.

It is only important
that the block occurs

before any block refers
to it. There is no con-
cept of forward decla-

ration in TinyBuilder.

94

Maintenance Story

 machine
 builder

job build production program 1
 include input
 utils library headers
 program 1 headers
 program 1 source
 input
 libs/production/libutils.a
 paths
 output directory = obj
 output directory = bin/production
 include data
 production compile options
 utils library compile options
 production link options
 values
 compiler options = -Iprogram1/include
 include data with name source files
 program 1 source
 paths
 executable = bin/production/program1
 library paths = libs/production
 values
 libraries = utils
 include step build program
 output directory
 compiler options
 source files
 link options
 executable
 library paths
 libraries
 output
 bin/production/program1
 machine
 builder

file list program 2 headers
 files
 program2/include/module3.h

95

Maintenance Story

 program2/include/module4.h

file list program 2 source
 files
 program2/src/main.c
 program2/src/module3.c
 program2/src/module4.c

job build debug program 2
 include input
 utils library headers
 program 2 headers
 program 2 source
 input
 libs/debug/libutils.a
 paths
 output directory = obj
 output directory = bin/debug
 include data
 debug compile options
 utils library compile options
 debug link options
 values
 compiler options = -Iprogram2/include
 include data with name source files
 program 2 source
 paths
 executable = bin/debug/program2
 library paths = libs/debug
 values
 libraries = utils
 include step build program
 output directory
 compiler options
 source files
 link options
 executable
 library paths
 libraries
 output
 bin/debug/program2
 machine

96

Maintenance Story

 builder

job build production program 2
 include input
 utils library headers
 program 2 headers
 program 2 source
 input
 libs/production/libutils.a
 paths
 output directory = obj
 output directory = bin/production
 include data
 production compile options
 utils library compile options
 production link options
 values
 compiler options = -Iprogram2/include
 include data with name source files
 program 2 source
 paths
 executable = bin/production/program2
 library paths = libs/production
 values
 libraries = utils
 include step build program
 output directory
 compiler options
 source files
 link options
 executable
 library paths
 libraries
 output
 bin/production/program2
 machine
 builder

project main
 builds
 build debug utilities library
 build production utilities library

97

Maintenance Story

 build debug program 1
 build production program 1
 build debug program 2
 build production program 2

98

Now that the patterns in Bob’s script were consolidated, Alice realized that the script had the
following problems:

Jobs were including blocks that were far from the job blocks, so a lot of skipping around within
the script was necessary when updating the script.

Any changes made by different developers would require a merge, even when the changes affected
different binaries.

The file paths always included directories and could be shortened.

To address the remaining problems, Alice decided to make use of the import block. To make
script components easy to find, she decided to place file list blocks, data blocks and
job blocks into their own files and place those files in the same directory as the source. The data
and steps used throughout the build would be placed in a build directory. Once complete, the
build scripts would look like:

build/data.tb:

data debug compile options
 values
 compiler options = -O0
 compiler options = -m64
 compiler options = -g

data production compile options
 values
 compiler options = -O3
 compiler options = -m64

data debug link options
 values
 link options = -g

data production link options

build/main.tb:

import steps.tb
import data.tb
import ../utils/jobs.tb

The convention is to
create a main.tb in the
build directory and
import the entire build
into that file. Doing
so simplifies the use
of the client, though
the client will not
enforce this convention.
Another convention
is to import the jobs.
tb scripts in the main.
tb. Doing so brings in
everything needed for
the jobs referred to in
the project. A third
convention is to name
the project that builds
the product main,
which is the default
name. Another root
project may be desired
to run the automated
tests, if running the
product tests as part
of the product build is
not desired. Obviously,
it is a best practice to
have automated tests;
this example script
doesn’t have any.

99

Maintenance Story

import ../program1/src/jobs.tb
import ../program2/src/jobs.tb

project main
 builds
 build debug utilities library
 build production utilities library
 build debug program 1
 build production program 1
 build debug program 2
 build production program 2

build/steps.tb:

step create output directory
 parameters
 directory
 commands break on error
 mkdir
 -p
 <<enumerate>directory>

step compile C files
 parameters
 compiler options
 source files
 commands break on error
 gcc
 -c
 <compiler options>
 -o
 obj/<<enumerate, base name, file name> source
files>.o
 <<enumerate along> source files>

step archive library
 parameters
 source files
 output
 commands break on error
 ar

Note how no change
has been made to the

blocks as they are
moved to different

files. This is correct
since there are no

paths specified in these
blocks.

100

Maintenance Story

 q
 <output>
 obj/<<base name, file name>source files>.o

step link program
 parameters
 link options
 source files
 executable
 library paths
 libraries
 commands break on error
 gcc
 <link options>
 -o
 <executable>
 obj/<<base name, file name>source files>.o
 -L<library paths>
 -l<libraries>

step build library
 parameters
 output directory
 compiler options
 source files
 archive name
 include step create output directory
 output directory
 include step compile C files
 compiler options
 source files
 include step archive library
 source files
 archive name

step build program
 parameters
 output directory
 compiler options
 source files
 link options
 executable

101

Maintenance Story

 library paths
 libraries
 include step create output directory
 output directory
 include step compile C files
 compiler options
 source files
 include step link program
 link options
 source files
 executable
 library paths
 libraries

include/files.tb:

file list utils library headers
 files
 file.utils.h
 screen.utils.h

program1/include/files.tb:

file list program 1 headers
 files
 module1.h
 module2.h

program1/src/data.tb:

data build debug program 1 settings
 paths
 output directory = obj
 output directory = ../../bin/debug
 include
 debug compile options
 debug link options
 values
 compiler options = -I../../include

Each files.tb specifies
all of the file lists
needed to use all

the files in the same
directory. Note how

all paths no longer
require directories; a

copy from the original
script would point to

files that don’t exist.

Since most paths and
settings have been
removed from the

job, it is easy to create
another similar job

using copy/paste. The
new job should be

exactly like the old job,
but with different block
names. A good naming

convention will make
it easy to change the

block names.

102

Maintenance Story

 compiler options = -I../include
 include with name source files
 program 1 source
 paths
 executable = ../../bin/debug/program1
 library paths = ../../libs/debug
 values
 libraries = utils

data build production program 1 settings
 paths
 output directory = obj
 output directory = ../../bin/production
 include
 production compile options
 production link options
 values
 compiler options = -I../../include
 compiler options = -I../include
 include with name source files
 program 1 source
 paths
 executable = ../../bin/production/program1
 library paths = ../../libs/production
 values
 libraries = utils

program1/src/files.tb:

file list program 1 source
 files
 main.c
 module1.c
 module2.c

program1/src/jobs.tb:

import ../include/files.tb
import files.tb
import data.tb

By convention, the
jobs.tb imports the files
it needs for the jobs in
the file. This conven-
tion is not enforced.

103

Maintenance Story

job build debug program 1
 include input
 utils library headers
 program 1 headers
 program 1 source
 input
 ../../libs/debug/libutils.a
 include data
 build debug program 1 settings
 include step build program
 output directory
 compiler options
 source files
 link options
 executable
 library paths
 libraries
 output
 ../../bin/debug/program1
 machine
 builder

job build production program 1
 include input
 utils library headers
 program 1 headers
 program 1 source
 input
 ../../libs/production/libutils.a
 include data
 build production program 1 settings
 include step build program
 output directory
 compiler options
 source files
 link options
 executable
 library paths
 libraries
 output
 ../../bin/production/program1

104

Maintenance Story

 machine
 builder

program2/include/files.tb:

file list program 2 headers
 files
 module3.h
 module4.h

program2/src/data.tb:

data build debug program 2 settings
 paths
 output directory = obj
 output directory = ../../bin/debug
 include
 debug compile options
 debug link options
 values
 compiler options = -I../../include
 compiler options = -I../include
 include with name source files
 program 2 source
 paths
 executable = ../../bin/debug/program2
 library paths = ../../libs/debug
 values
 libraries = utils

data build production program 2 settings
 paths
 output directory = obj
 output directory = ../../bin/production
 include
 production compile options
 production link options
 values
 compiler options = -I../../include
 compiler options = -I../include

105

Maintenance Story

 include with name source files
 program 2 source
 paths
 executable = ../../bin/production/program2
 library paths = ../../libs/production
 values
 libraries = utils

program2/src/files.tb:

file list program 2 source
 files
 main.c
 module3.c
 module4.c

program2/src/jobs.tb:

import ../include/files.tb
import files.tb
import data.tb

job build debug program 2
 include input
 utils library headers
 program 2 headers
 program 2 source
 input
 ../../libs/debug/libutils.a
 include data
 build debug program 2 settings
 include step build program
 output directory
 compiler options
 source files
 link options
 executable
 library paths
 libraries
 output

106

Maintenance Story

 ../../bin/debug/program2
 machine
 builder

job build production program 2
 include input
 utils library headers
 program 2 headers
 program 2 source
 input
 ../../libs/production/libutils.a
 include data
 build production program 2 settings
 include step build program
 output directory
 compiler options
 source files
 link options
 executable
 library paths
 libraries
 output
 ../../bin/production/program2
 machine
 builder

utils/data.tb:

data build debug utilities library settings
 paths
 output directory = obj
 output directory = ../libs/debug
 include
 debug compile options
 values
 compiler options = -I../include
 include with name source files
 utils library source
 paths
 archive name = ../libs/debug/libutils.a

107

Maintenance Story

data build production utilities library settings
 paths
 output directory = obj
 output directory = ../libs/production
 include
 production compile options
 values
 compiler options = -I../include
 include with name source files
 utils library source
 paths
 archive name = ../libs/production/libutils.a

utils/files.tb:

file list utils library source
 files
 file.utils.c
 screen.utils.c

utils/jobs.tb:

import ../include/files.tb
import files.tb
import data.tb

job build debug utilities library
 include input
 utils library source
 utils library headers
 include data
 build debug utilities library settings
 include step build library
 output directory
 compiler options
 source files
 archive name
 output
 ../libs/debug/libutils.a
 machine

108

Maintenance Story

 builder

job build production utilities library
 include input
 utils library source
 utils library headers
 include data
 build production utilities library settings
 include step build library
 output directory
 compiler options
 source files
 archive name
 output
 ../libs/production/libutils.a
 machine
 builder

109

Maintenance Story

After the script was complete, a third program, program3, was added to the project. The pro-
gram had two modules in addition to a main module; the utils library was not used by this pro-
gram. The source would be placed in the program3 directory with an include and a src
directory.

build/main.tb:

import steps.tb
import data.tb
import ../utils/jobs.tb
import ../program1/src/jobs.tb
import ../program2/src/jobs.tb
import ../program3/src/jobs.tb

project main
 builds
 build debug utilities library
 build production utilities library
 build debug program 1
 build production program 1
 build debug program 2
 build production program 2
 build debug program 3
 build production program 3

program3/include/files.tb:

file list program 3 headers
 files
 module5.h
 module6.h

program3/src/data.tb:

data build debug program 3 settings
 paths
 output directory = obj
 output directory = ../../bin/debug
 include
 debug compile options

The change to main.tb
consists of importing

another jobs.tb file and
adding the two new

jobs to the project.

This file and the
corresponding file for

program2 are very
similar. Basically,

the string program
2 was replaced with
the string program

3 to complete the
data.tb file. That is

the value of a naming
convention.

110

Maintenance Story

 debug link options
 values
 compiler options = -I../include
 include with name source files
 program 3 source
 paths
 executable = ../../bin/debug/program3

data build production program 3 settings
 paths
 output directory = obj
 output directory = ../../bin/production
 include
 production compile options
 production link options
 values
 compiler options = -I../include
 include with name source files
 program 3 source
 paths
 executable = ../../bin/production/program3

program3/src/files.tb:

file list program 3 source
 files
 main.c
 module5.c
 module6.c

program3/src/jobs.tb:

import ../include/files.tb
import files.tb
import data.tb

job build debug program 3
 include input
 program 3 headers
 program 3 source

111

Maintenance Story

 include data
 build debug program 3 settings
 include step build program
 output directory
 compiler options
 source files
 link options
 executable
 library paths
 libraries
 output
 ../../bin/debug/program3
 machine
 builder

job build production program 3
 include input
 program 3 headers
 program 3 source
 include data
 build production program 3 settings
 include step build program
 output directory
 compiler options
 source files
 link options
 executable
 library paths
 libraries
 output
 ../../bin/production/program3
 machine
 builder

112

Maintenance Story

Alice’s company added more developers and the builder server started to slow. Her it depart-
ment added a new server with the same tool chain and called it builder2. To allow the build to
use either one of the two servers at random, she added a machines block to build/main.
tb as follows:

build/machines.tb:

machine builder
 path
 tb://builder
 tb://builder2

build/main.tb:

import machines.tb
import steps.tb
import data.tb
import ../utils/jobs.tb
import ../program1/src/jobs.tb
import ../program2/src/jobs.tb
import ../program3/src/jobs.tb

project main
 builds
 build debug utilities library
 build production utilities library
 build debug program 1
 build production program 1
 build debug program 2
 build production program 2
 build debug program 3
 build production program 3

Note that the machine
block was imported
before other scripts.
This was done to pre-
vent a default machine
block from being
constructed by the first
job in the script.

113113

Index

A
abstract server 24

B
base name 8, 42
block 2
build job 2

C
CodePoint tag 48
command block 5, 6, 15, 16
command break on error 5, 16
command complete with error 5, 16
command element 46, 47
command ignore error 5, 16
command line 6, 7, 8, 16
concurrency block 23, 24, 46, 53

D
data block 6, 9, 10, 11, 12, 13
data value 2, 6, 10, 27, 37, 38
development environment 17, 18, 19, 46
development environment block 18, 19
directory name 8, 39, 40, 41, 42

E
elapsed tag 48, 49
enumerate 7, 28, 31, 32, 35, 36, 37
enumerate along 8, 35, 36
enumerate within 7, 32, 34
environment 7
environment prefix 17, 46
environment replace 17, 46
environment suffix 17, 46
err element 47, 48
error element 45
expansion 2, 5, 6, 7, 8, 13, 14
expansion option 2, 7, 8, 13, 65, 81, 82

F
failed output block 19, 49
file list 2, 6, 10, 11, 12, 13, 91, 98
file name 7, 13, 41, 42

H
hop 20, 45
hop element 45

I
import 3, 25, 98
include data block 10, 12
including blocks 2, 10, 11, 12, 16, 74, 83
input archive 4, 5
input block 12, 38

InvalidByte tag 48
J

job block 2, 3, 6, 10, 16, 20, 22, 23, 45, 50
job element 45, 46

M
machine 2, 3
machine block 19, 20, 21, 22, 23, 45, 52, 54, 112
machine element 45, 46
make complete 24, 45
make scheduling 24, 25, 50, 51

O
out element 47, 48
output archive 5
output block 19, 38, 46
output element 49
OutputError element 49

P
parameter element 47
path 20, 45
path block 10, 20, 21, 54
path ID 21
path list block 20, 21
path segment 39, 40, 41, 42
path value 2, 6, 7, 10, 11, 12, 13, 27, 35, 37, 38, 39
project block 6, 24, 25, 50

R
required 7, 27
return element 47

S
signal element 47
step block 6, 14, 16

T
test job 2, 3
throttle tag 49

V
value. See data value, path value
value block 6, 10

W
with name 10, 11
work area 2, 4, 5, 19, 38, 47, 49, 58, 60

